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Abstract

We give a self-contained exposition of several aspects of Croot-Sisask almost periodicity, with a spe-
cial focus on its application to Roth’s theorem. Using almost periodicity, we obtain a bound on the size
of the largest subset of Zn with no nontrivial three-term arithmetic progression of n(log log n)6/ log n.
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1 Introduction

The existence of three-term arithmetic progression in dense subsets has motivated many developments
in additive combinatorics. Roth [32] first proved using Fourier analysis that any dense subset of a large
interval must contain a nontrivial three-term arithmetic progression (one with distinct terms). In par-
ticular, Roth showed that the largest subset of ZN with no nontrivial three-term arithmetic progression
has size at most Cn/ log logn. Meshulam [30] applied Fourier analysis over the finite field vector space
setting and proved that the largest subset of Fn3 without a nontrivial three-term arithmetic progression
has size at most C3n/n. Many subsequent improvements to the bound were obtained by better using the
spectral information [25, 40, 9, 10, 36, 5], leading to the best known bound over Zn of Bloom [5], which
is n(log log n)4/ log n. Recently, Ellenberg and Gijswijt [16], building on results of Croot, Lev and Pach
[12], obtained a breakthrough result over the finite field vector space setting, proving that the largest
subset of Fnp without a nontrivial three-term arithmetic progression has size at most (cpp)

n where cp is a
constant strictly smaller than 1. The method they use, however, is algebraic and it is orthogonal to all the
developments we discuss above. Furthermore, it is not clear if any such approach can work in the setting
of cyclic groups or the integers, since there is a lower bound, constructed by Behrend [3] and improved by
Elkin [15], Green and Wolf [23], showing that the there exists a subset of Zn without nontrivial three-term
arithmetic progression which has size at least n exp(−c

√
log n).

We discuss in this essay Croot-Sisask almost periodicity [13, 6, 38], a recent development in additive
combinatorics that can get close to essentially the best known upper bound on the size of the largest
subset of Zn without a nontrivial three-term arithmetic progression.

Theorem 1. There exists a constant C > 0 such that the following holds. Let G be an abelian group and
let l be an integer. Let A,X be subsets of G such that there is a subset S with |S +A| ≤ K|A|, then there
exists a subset T of S with |T | ≥ |S|

2KCpk2/ε2
such that for all t1, t2, · · · , t2k−1, t2k ∈ T ,

‖A ∗X(t1 − t2 + · · ·+ t2k−1 − t2k + ·)−A ∗X(·)‖p ≤ ε
|A|1/2

|G|1/2
‖A ∗X‖1/2p/2 + ε2

|A|
|G|

.

Almost periodicity roughly says that the convolutions of two sets A and X, where A is additively
structured (in the sense that A has small expansion under addition by S), is close to being periodic, in an
Lp-sense. While previous approach often takes place in the spectral domain (analyzing the structure of
the Fourier coefficients), almost periodicity takes place in the physical domain (i.e., working directly with
the group G). To obtain this, the essential idea is to do random sampling and concentration inequalities
to show that the convolution A ∗X is actually well-approximated by A′ ∗X (appropriately scaled) where
A′ is a random constant-size subset of A. Using almost periodicity, we can smooth out A using the set
of almost periods V so that A ∗ A and A ∗ A ∗ V are close. Since A ∗ A ∗ V is much smoother, we can
understand A∗A∗V and pass this information back to A. We also remark that almost periodicity applies
directly to general (possible nonabelian) groups, with the same proof that we will give. However, since we
focus on abelian groups in the applications we discuss, we will specialize on the abelian case for ease of
notations.

Before discussing the applications of almost periodicity, it is important to understand the limits of
almost periodicity. We provide a upper bound construction on the set of almost periods, which shows that
the linear dependency on p in Theorem 1 is tight. This construction has not appeared explicitly before in
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the literature. We also use a previous spectral construction of Green [18] to show the tight dependency
on α and ε for constant p. It is unknown whether the joint dependency on p and α, ε is tight.

Due to the tight dependency on p, the Lp almost periodicity of the convolution cannot be improved to
L∞ almost periodicity. However, under the extra assumption of bounded VC dimension, this is possible,
as noticed by [39, 2]. Since the ideas around this result are fascinating and beautiful, we also include an
exposition of the L∞ almost periodicity result. The proof in [39] is a direct generalization of the proof of
the Lp almost periodicity result, coupled with ideas from empirical process theory that allows for control
of the supremum of empirical processes. This applies to sets with bounded VC dimension and small
expansion in exactly the same way as in the Lp almost periodicity results. We introduce this result due to
its direct relationship with the Lp almost periodicity results and the beautiful ideas involved in empirical
process theory. The shorter proof in [2] of a very similar result under a slightly different condition and the
relationship between the two results are also discussed. Again, as earlier remarked, these results can also
be generalized to nonabelian groups, but we restrict our discussions to abelian groups for consistency.

Since the count of three-term arithmetic progression can be written as an inner product of A ∗A and
2·A = {2a, a ∈ A}, it is not surprising that such a result immediately has consequences on Roth’s theorem.
One of the main goals of this essay is to derive the following bound on Roth’s theorem.

Theorem 2. Let n be coprime to 2. The maximum size of a subset of Zn with no nontrivial three-term
arithmetic progression is at most n(log log n)6/ log n.

We follow closely [6] for the exposition of this result, though we give a slightly more efficient argument
that improves their constant of 7 in the exponent of the log log n factor. It is also remarked in [6] that
the bound can be improved. This is the same as the bound by Sanders [35] using almost periodicity, and
it is close to the best known bound on Roth’s theorem by Bloom [5], which improves the exponent on the
log logn factor to 4. Sanders’ argument uses almost periodicity together with the Katz-Koester transform,
which is interesting in its own right. We therefore also give an exposition of the Katz-Koester transform.

Furthermore, we can also obtain a much better bound on a generalized notion of arithmetic progression
using almost periodicity. Notice that (x, y, z) forms a three-term arithmetic progression if and only if
x+ z = 2y. We can consider a similar equation in more variables, x+ y+ z = 3w. Behrend’s construction
generalizes and shows that there exists a set of size at least n exp(−c

√
log n) with no solution to the

equation x + y + z = 3w where x, y, z, w are not identical (in which case we say that the solution is
nontrivial). The next theorem [38] shows that we can achieve essentially a Behrend-type bound using
almost periodicity when the number of variables is at least 4.

Theorem 3. Let n be coprime to 6. The maximum size of a subset of Zn with no nontrivial solution to
x+ y + z = 3w is at most n exp(−c(log n)1/5).

For this result, we follow [38]. While it is expectable that the bounds we get for the density of a set
avoiding nontrivial solutions to x+ y+ z = 3w to be better than the bounds in Roth’s theorem, since the
larger number of convolutions involved implies a smoother structure, it is still quite amazing that almost
periodicity can get us all the way to a Behrend-type bound.

We briefly sketch our way to Theorem 2 and 3. The basic frame of the argument follows the density
increment approach that underlies Roth’s proof. Assuming that a subset A of Zn is pseudorandom in a
suitable sense, we can then count the number of solutions to the linear equation, which should be close
to the expected number of solutions in a random set with the same density. If A deviates from the
pseudorandom behavior, we show that there is a “nice subset” of the group where A has increased density.
We then localize on this subset and repeat the same procedure. Roth’s original proof considers arithmetic
progressions as the “nice subsets”, in which the argument can be easily iterated due to homogeneity of
arithmetic progressions, however, this leads to certain inefficiency in the quantitative bounds. In finite
field vector spaces, the situation is much nicer since the “nice subsets” are subspaces, which are plentiful.
It was realized by Bourgain [9, 10] that one can consider a natural generalization of subspaces in general
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abelian groups, which he calls Bohr sets. We will follow the same approach, and therefore, our general
scheme is a density increment approach on Bohr sets in Zn.

Working with Bohr sets is, in general, much more technical than working with subgroups or subspaces,
due to their non-homogeneity. However, there are several small tricks that allow us to treat Bohr sets
essentially as subspaces in the arguments. We will cover these in the preliminary section on Bohr sets.
Since the arguments for Bohr sets model very closely the arguments for subspaces over finite field vector
spaces, we also cover the arguments over finite field vector spaces, where the main ideas are perhaps
clearer. It is a common phenomenon [6, 38, 21, 43, 17] that many arguments in additive combinatorics,
especially those of iterative nature, can be cleanly developed over finite field vector spaces, and then passed
to general abelian groups using standard but technical machineries. We refer the the reader to the surveys
[21, 43] for further discussion of this phenomenon, known as the finite field model.

Next, we briefly discuss the crux of the argument using almost periodicity. Almost periodicity is used
each step to obtain density increment, replacing the spectral approach which looks at the Fourier transform
for non-uniformity. However, for the iterative approach to work, we need to have a structured set, such
as a subspace or a Bohr set, where we can control A, while almost periodicity produces an arbitrary set
of almost periods. As such, we need to perform a bootstrapping procedure to show that we can enforce
structure in the set of almost periods, and pick a large subspace or Bohr set of almost periods. This step
depends crucially on the key intuition that we have a very good quantitative bound on the size of the
set of almost periods, and taking sums of almost periods only grows the approximation linearly, while
iterated sumsets has an exponential smoothing effect on the Fourier coefficient. To show quantitatively
that we do not lose too much in the dimension when we pass down to the subspace or Bohr set, we need
Chang’s lemma [11], generalized to the relativised setting of sets defined locally on Bohr sets by Sanders
[36]. Chang’s lemma is a very useful result in additive combinatorics, which gives a tight bound on the
structure of the large spectrum of a function. We dedicate a section to prove Chang’s lemma and recover
the machinery of Sanders. Once we have a subspace or Bohr set V of almost periods, we can easily obtain
increment. Since A ∗ A ∗ V is much smoother than A ∗ A, and it approximates A ∗ A, the density of
three-term arithmetic progressions in A can be approximated by that of the simpler function A ∗ A ∗ V .
If A ∗A ∗ V is very balanced, hence close to α, we can conclude that the density of three-term arithmetic
progressions must be close to α3. On the other hand, if A ∗A ∗ V deviates from α then we obtain density
increment.

We remark that though the bounds on Roth’s theorem over finite field vector spaces using the method
in this essay is much weaker than what is known, the arguments over the finite field vector spaces act as
model versions for those over general abelian groups. While the arguments over general abelian groups are
often direct generalizations of those over finite field vector spaces, they are significantly more technical.
The readers are encouraged to read the model arguments over finite field vector spaces to construct the
general framework before moving to the general case where more technicalities are involved.

Structure of the essay

In Section 2, we cover the preliminaries on Fourier analysis on Bohr sets. In Section 3, we cover the
almost periodicity results, following [13]. In Section 4, we describe the bootstrapping procedure to obtain
a structured set of almost periods. This relies heavily on the analysis of the large spectrum (Chang’s
lemma) in abelian groups, and their localized and relativised version over Bohr sets (due to Sanders),
which is also covered in full details. We mostly follow [36] in this exposition. In Section 5, we prove Roth’s
theorem and its generalization to more variables over the finite field vector space setting. In Section 6, we
prove Roth’s theorem and its generalization to more variables over general abelian groups, in particular,
over cyclic groups and the integers. The materials for these sections are drawn from [6, 38]. In Section 7,
we prove the upper bounds on the size of the set of Lp almost periods, showing the limits of the quantitative
bounds in almost periodicity results. In Section 8, we introduce the recent L∞ almost periodicity results
in [39, 2], which apply to sets with bounded VC dimension. In Section 9, we state several other major
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applications of almost periodicity as well as some future directions.

Acknowledgements

We would like to thank Professor Julia Wolf for many helpful conversations and suggestions throughout
the course of the essay. We are also very grateful to Dr. Thomas Bloom for many enlightening discussions
related to almost periodicity and Roth’s theorem, and for pointing us to study many interesting questions.

Notations

We write E for the averaging operator. If no additional information is specified, E averages over the
uniform distribution over the appropriate domain. We use E for the expectation, when there is an explicit
probability space involved. Correspondingly, P denotes the probability over the uniform distribution and
P for the probability over the explicit probability space involved.

When we write Ex or
∑

x, we assume x ranges over a domain that should be clear from context (most
often the whole group G).

Given a group G, we write
‖f‖p = (Ex∈Gf(x)p)1/p.

In the Fourier space Ĝ, we use the counting measure, so for ω defined on Ĝ,

‖ω‖p = (
∑
χ∈Ĝ

|ω(χ)|p)1/p.

We quite often work with general measures, for example, when we want to restrict our averaging to
a Bohr set instead of the whole group. Since we only focus on discrete groups, a measure µ can be
equivalently given by its density mµ with respect to the uniform measure on G, defined so that∫

G
f(x)dµ(x) =

∑
x∈G f(x)mµ(x)

|G|
,

where
∑

xmµ(x) = |G|. We denote

‖f‖Lp(µ) =

(∫
G
|f(x)|pdµ(x)

)1/p

.

Note that in Fourier space, we retain our counting inner product.
For a subset A of G, we denote by A the indicator function, i.e., A(x) = 1 if x ∈ A and A(x) = 0

otherwise.
When there is no confusion, we use Greek letters, most usually α and β, to denote either the density

of a subset (A or B) of G, or the uniform measure over the subset (A or B). For example, for a subset B
of G, we use β to denote |B||G| , or the measure with density mβ(x) = B(x)·|G|

|B| with respect to the uniform
measure over G. We also sometimes write mB(x) to denote the density of the uniform measure over B
with respect to the uniform measure over G where it is convenient, and denote ‖f‖Lp(B) = ‖f‖Lp(β).

Given two subsets of a group G, we define the sumset

A+X = {a+ x, a ∈ A, x ∈ X}.

We denote the scaling of a subset A of an abelian group G by

k ·A = {ka, a ∈ A}.

We use standard asymptotic notations. For an asymptotic parameter x, f(x) = O(g(x)) if there exists
C such that |f(x)| ≤ C|g(x)|. We also denote f(x)� g(x) if f(x) = O(g(x)).
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2 Preliminaries

In this section, we lay out the basic tools of additive combinatorics which we will use. In particular, we
will discuss briefly Fourier analysis on abelian groups, which is very useful in counting solutions of linear
equations in abelian groups. We then introduce Bohr sets, a crucial tool in additive combinatorics, which
can be seen as approximate subgroups. Bohr sets are used to replace the role of subgroups or subspaces,
and they are essential in the so-called “density increment” approach, which we will encounter in Section 6.

2.1 Convolutions

Even though the almost periodicity result that we prove applies to general groups, we will focus mostly on
finite abelian groups in all applications. Therefore, we use addition as the group operation for consistency
of notation. Given a group G, we define the convolution

f ∗ g(x) = Ey∈Gf(y)g(−y + x) =
1

|G|
∑
y∈G

f(y)g(−y + x).

Given subsets A and X of G,

A ∗X(x) = Ey∈GA(y)X(−y + x) =
|A ∩ (x−X)|

|G|
,

and
mA ∗X(x) =

|A ∩ (x−X)|
|A|

.

It is useful to note the order of magnitude of the convolutions. Note that ExA ∗ X(x) = |A||X|
|G| , so

ExmA ∗mX(x) = 1. Furthermore, A ∗X(x) ≤ min{|A|,|X|}
|G| . In particular,

Ex(A ∗X(x))2 ≤ min{|A|, |X|}
|G|

· |A||X|
|G|

≤ |A|
2|X|
|G|2

.

2.2 Fourier analysis on abelian groups

Given an abelian group G, let Ĝ be the group of characters χ : G→ C. Given a function f : G→ C, the
Fourier transform of f is defined by

f̂(χ) = Ex∈G[f(x)χ(x)].

We record without proof some standard facts about the Fourier transform, which are obvious upon
expansion of the following identities

Exχ(x) =

{
1, χ = 0

0, χ 6= 0

∑
χ

χ(x) =

{
|G|, x = 0

0, x 6= 0

Fourier Inversion Formula.
f(x) =

∑
χ

f̂(χ)χ(−x).

Parseval’s identity.
E[f(x)g(x)] =

∑
χ

f̂(χ)ĝ(χ).
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Fourier transform of convolutions.

f̂ ∗ g(χ) = f̂(χ)ĝ(χ).

Translation. We define the translation operator τtf(x) = f(t+ x).

τ̂tf(χ) = Ef(t+ x)χ(x) = χ(−t)Ef(x)χ(x) = χ(−t)f̂(χ).

When G is a finite abelian group, the Fourier transform can be explicitly described. Let G =
∏m
i=1 Zni .

Then Ĝ ∼=
∏m
i=1 Zni , and each element (a1, · · · , am) ∈

∏m
i=1 Zni can be identified with a character via

χa(x) = exp(2πi
∑m

i=1 aixi/ni). We usually overload the notation to denote χ both as a character and as
an element in

∏m
i=1 Zni . In particular, in a prime cyclic group Zp, each character can be identified with

an element of Zp where χ(x) = exp(2πiχx/p). In a finite field vector space Fnp , each character can be
identified with an element of Fnp where χ(x) = exp(2πiχ · x/p), where a · x =

∑n
i=1 aixi is the usual dot

product. These will be the most important examples of the groups that we examine in this essay.
The Fourier transform is particularly efficient at counting solutions to linear equations. This is illus-

trated by the following formula over ZN

E∑n
i=1 aixi=0[

∏
i

fi(xi)] =
∑
χ

f̂n(χ)
n−1∏
i=1

f̂i(a
−1
n aiχ),

for an ∈ Z×N . Indeed,

E∑n
i=1 aixi=0[

∏
i

fi(xi)] = E∑n
i=1 aixi=0[

n∏
i=1

(
∑
χi

f̂i(χi)χi(−xi))]

= E∑n
i=1 aixi=0[

∑
χ

n∏
i=1

f̂i(χi)χi(−xi)]

=
∑
χ

E∑n
i=1 aixi=0[

n∏
i=1

f̂i(χi)χi(−xi)]

=
∑
χ

E∑n
i=1 aixi=0[exp(−2πi

n∑
i=1

xiχi/N)
n∏
i=1

f̂i(χi)]

=
∑
χ

Ex1,··· ,xn−1 [exp(−2πi

n−1∑
i=1

xi(χi − a−1
n aiχn)/N)

n∏
i=1

f̂i(χi)]

=
∑
χ

n∏
i=1

f̂i(χi)Exi exp(−2πixi(χi − a−1
n aiχn)/N)

=
∑
χ

f̂n(χ)

n−1∏
i=1

f̂i(a
−1
n aiχ).

The same holds over Fnp where the coefficients a1, a2, · · · , an ∈ F×p . This formula underlines proofs of
Roth’s theorem using Fourier analysis.

2.3 Bohr sets

One advantage in working over vector spaces is the existence of many subspaces that allows for an inductive
approach to prove Roth’s theorem. Given a general abelian group G, this is no longer true (for example,
there is no nontrivial subgroup in Z or Zp), and so we need to define proper notion of well-behaving subsets
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of G where the iterative approach can be carried out. The subsets should behave like a subgroup, and
they should have a homogeneous structure that allows for iteration. This is the motivation for Bohr sets.
Notice that a subspace of a vector space can be equivalently defined as the vanishing set of a collection of
characters. This definition naturally generalizes to general abelian groups.

Definition 4. For a real number x, let ‖x‖ = inf{|x − n|, n ∈ Z}. A Bohr set B(Γ, ρ̄) with frequency
Γ = (γ1, · · · , γd) ∈ Ĝd and radius ρ = (ρ1, · · · , ρd) ∈ [0, 1]d is defined by

B(Γ, ρ) = {x ∈ G : ‖ arg(γi(x))/2π‖ ≤ ρi∀1 ≤ i ≤ d}.

We call d the dimension of B(Γ, ρ). We write B(Γ, ρ) to denote the Bohr set where all radii are the same
and equal to ρ. Furthermore, we write B(Γ, ρ)ν = B(Γ, νρ) to be the Bohr set with the scaled radii.

We remark that in most applications, we only need to consider Bohr sets with all radii being the same.
An immediate consequence of the definition is that for all x ∈ B(Γ, ρ),

|1− γi(x)| ≤ 2πρi.

In fact, one can also instead define the Bohr set based on how close γi(x) is to 1, which is equivalent up
to constant factors. There are several nice properties of Bohr sets which we will need throughout. They
are usually implicitly generalizations of corresponding properties of subgroups or subspaces. Some of the
material in this section is drawn from [17, 41].

First, we give several estimates on the size of Bohr sets and its doubling constant.

Proposition 5. We have

|B(Γ, ρ)| ≥ |G|
d∏
i=1

ρi.

|B(Γ, 2ρ)| ≤ 4d|B(Γ, ρ)|.

Proof. Define P : G → Rd/Zd by P (g) = (arg(γig)/2π)di=1. To prove the first inequality, identiy Rd/Zd

with [0, 1]d and note that we can partition [0, 1]d to
∏d
i=1

1
ρi

subboxes of diameter ρ. Then there exists a
subbox Q with |P−1(Q)| ≥ |G|

∏d
i=1 ρi. Fix any x ∈ Q, then for any y ∈ Q, | arg(γix)−arg(γiy)|/2π ≤ ρi,

so y − x ∈ B(Γ, ρ). Thus, |B(Γ, ρ)| ≥ |G|
∏d
i=1 ρi.

For the second inequality, partition
∏d
i=1[−2ρi, 2ρi] ⊆ Rd/Zd into 4d subboxes with diameter ρ. In

each subbox, choose a point in B(Γ, 2ρ) if it exists. Let X be the set of chosen points. Then, X +B(Γ, ρ)
covers B(Γ, 2ρ) since for each point y in a subbox containing x, | arg(γix)− arg(γiy)|/2π ≤ ρi. Thus,

|B(Γ, 2ρ)| ≤ |X||B(Γ, ρ)| ≤ 4d|B(Γ, ρ)|.

Note that from the definition of Bohr sets and the triangle inequality, we have B(Γ, ρ) + B(Γ, ρ′) ⊆
B(Γ, ρ+ ρ′). The second estimate thus suggests that Bohr sets are fairly stable under addition. However,
quantitatively, Bohr sets behave more similarly to a multidimensional arithmetic progression or a box
under addition than a subspace. Indeed, it is straightforward from the definition that a Bohr set is the
inverse image of a box under the group homomorphism given by the characters as we have used in the
proof of the above proposition. Though Bohr sets are quite nicely behaved under addition, they are much
worse than a subgroup, especially when we deal with quantitative problems where the exponential factor
in the dimension becomes too large. However, observe that the addition of a very small box to a large
box is much more stable (in the sense that the size only grows linearly rather than exponentially), and
essentially by localizing this way, Bohr sets can be treated more like subgroups. The crucial property we
need is referred to as regularity.
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Definition 6. A Bohr set B(Γ, ρ) of dimension d is regular if

∣∣∣∣B(Γ,

(
1 +

δ

80d

)
ρ

)∖
B

(
Γ,

(
1− δ

80d

)
ρ

)∣∣∣∣ ≤ 2δ|B(Γ, ρ)|,

for all 0 ≤ δ ≤ 1.
The next proposition shows that we do not lose much in asserting that our Bohr sets are regular.

Proposition 7. For an arbitrary Bohr set B(Γ, ρ) of dimension d, there exists r ∈ [1/2, 1] such that
B(Γ, rρ) is regular.

Proof. Let f : [1/2, 1] → R be defined by f(r) = log2 |B(Γ, rρ)|. Then f is increasing, and f(1) ≤
2d+ f(1/2). We aim to prove that there exists r∗ ∈ [1

2 + 1
80d , 1−

1
80d ] such that

f(r2)− f(r1) ≤ 40d(r2 − r1),

for all r1 = r∗ − δ
80d , r2 = r∗ + δ

80d with 0 ≤ δ ≤ 1. Then, for all 0 ≤ δ ≤ 1,∣∣∣∣B(Γ,

(
r∗ +

δ

80d

)
ρ

)∖
B

(
Γ,

(
r∗ −

δ

80d

)
ρ

)∣∣∣∣ = 2f(r∗+δ/80d) − 2f(r∗−δ/80d)

≤
∣∣B(Γ, r∗ρ)

∣∣ · (2δ − 1)

< 2δ|B(Γ, r∗ρ)|,

where we used that 2x ≤ 1 + 2x for all 0 ≤ x ≤ 1. The existence of r∗ is guaranteed essentially by
Hardy-Littlewood maximal inequality. Assume that there does not exist such r∗, then we have a collection
of intervals [r1, r2] covering [1

2 + 1
80d , 1 −

1
80d ] with the property that f(r2) − f(r1) > 40d(r2 − r1). By

Vitali’s covering lemma, we can find a finite subcollection of disjoint intervals whose total measure is at
least 1/20. Let r1 < r2 < · · · < r2l−1 < r2l be an ordering of the disjoint intervals [r2k−1, r2k], 1 ≤ k ≤ l.
Then

1

20
≤

l∑
k=1

|r2k − r2k−1| <
1

40d

l∑
k=1

(f(r2k)− f(r2k−1))

<
1

40d
[(f(r2l)− f(r1))−

l−1∑
k=1

(f(2k + 1)− f(2k))] <
f(1)− f(1/2)

40d
≤ 1

20
,

contradiction.

We note that in the most applications, we actually only need the fact that∣∣∣∣B(Γ,

(
1 +

δ

80d

)
ρ

)∖
B
(
Γ, ρ

)∣∣∣∣ ≤ 2δ|B(Γ, ρ)|

for all special values of δ which are pre-chosen in the argument. This property can be much more easily
guaranteed, simply by observing that |B(Γ, rρ)| is increasing, with |B(Γ, ρ)|/|B(Γ, ρ/2)| bounded, so the
size of the Bohr set cannot grow too fast in all of the subintervals of length δ

80d , and so the growth of the
size of the Bohr set over one such interval must be small. We remark also that essentially localizing at
the scale of 1

d is necessary, since at such scale, the exponential growth rate of the Bohr set size is upper
bounded by a linear function, (1 + c

d)d ≤ 1 +γc for c small. This essentially explains why we need to work
with Bohr sets localized at this scale in the forthcoming arguments, since instead of large error terms, we
will only have small additive error terms (scaled by |B(Γ, ρ)|). Indeed, in application, we shall use the fact
that |B +Bδ/d| ≤ |B1+δ/d| ≤ (1 + δ)|B|, so up to an error of δ|B|, B +Bδ/d is approximately the same as
B, yielding a structure closer to the invariance of subgroups under addition. The small error term allows

9



us to say, for example, that a set A of relative density α in B has relative density α(1± 2δ) in B +Bδ/d.
By working with several Bohr sets at the correct relative scalings, and averaging over appropriate Bohr
sets, we can usually recover desirable properties and averaging effects that we have when working with
groups and subgroups. The loss in the scalings, which is polynomial in the dimension of the Bohr sets, is
usually negligible.

It will be useful to us later that a small change to the radius of a regular Bohr set does not significantly
change regularity. We remark that the following definition is somewhat nonstandard.

Definition 8. For κ ≤ 1
81d , a Bohr set B(Γ, ρ) of dimension d is κ-regular if

∣∣∣∣B(Γ,

(
1 +

δ

80d

)
ρ

)∖
B(Γ,

(
1− δ

80d

)
ρ)

∣∣∣∣ ≤ 2(δ + 81dκ)|B(Γ, ρ)|,

for all 0 ≤ δ ≤ 1− 81dκ.
Thus, if B(Γ, ρ) is regular then it is 0-regular. It is straightforward to verify the following proposition.

Proposition 9. If B is a κ-regular Bohr set, then for η < 1
81d − κ, B1+η is (κ+ η)-regular.

We remark that we only use κ-regular Bohr sets in Subsection 6.2.2 where we give a better quantitative
bound for Roth’s theorem compared to using only Bohr sets.

One useful property of subgroups is that we can use translates of a subgroup to tile the whole group,
so that each element of the group is covered using the same number of translates. This is also essentially
true for regular Bohr sets, but we need to work with Bohr sets at the appropriate scale mentioned before.

Proposition 10. Let B be a κ-regular Bohr set of dimension d. Let A ⊆ B have relative density α. Let
B′ = Bν where ν ≤ c/d for a constant c < 10−4. Then

Ex∈B+B′A ∗mB′(x) = α
|B|

|B +B′|
≥ α

1 + 162d(ν + κ)
.

In particular, for a Bohr set B1−τ ⊆ B′′ ⊆ B1+τ and t ∈ Bµ with τ, µ ≤ c/d for c < 10−4,

Ex∈B′′+tA ∗mB′(x) ≥ α

1 + 162d(τ + κ)
− 400d(ν + µ+ τ + κ).

Furthermore,
Ex∈B′′+tA ∗mB′(x) ≤ α(1− 162d(τ + κ)).

Proof. We have

Ex∈B+B′A ∗mB′(x) =
1

|B +B′||B′|
∑
x,y

(B +B′)(x)A(y)B′(x− y)

=
1

|B +B′||B′|
∑
y,z

A(y)B′(z)(B +B′)(y + z)

=
1

|B +B′||B′|
∑
y,z

A(y)B′(z)

= α
|B|

|B +B′|
.

10



Thus,

Ex∈B′′+tA ∗mB′(x) =
1

|B′′|
∑

x∈B+B′

(B′′ + t)(x)A ∗mB′(x)

≥ 1

|B′′|

[ ∑
x∈B+B′

A ∗mB′(x)− |(B +B′)\(B′′ + t)|

]

≥ α |B|
|B′′|

− |(B +B′) ∪ (B′′ + t)| − |B′′ + t|
|B′′|

≥ α |B|
|B1+τ |

− |B1+ν+µ+τ | − |B1+τ |
|B1−τ |

≥ α

1 + 162d(τ + κ)
− 400d(ν + µ+ τ + κ).

Furthermore,

Ex∈B′′+tA ∗mB′(x) =
1

|B′′|
∑

x∈B+B′

(B′′ + t)(x)A ∗mB′(x)

≤ α|B|
|B′′|

≤ α(1− 162d(τ + κ)).

Finally, we discuss the effect of scaling on Bohr sets.

Proposition 11. Let k be an integer and assume that k - |G|, so the inverse of the automorphism of G
mapping x 7→ kx is well-defined. Let B = B(Γ, ρ) be a Bohr set, and let

k ·B = {kb, b ∈ B}.

Then k · B is a Bohr set with characters Γ/k = {γ/k, γ ∈ Γ}, and radius ρ. Moreover, if B is κ-regular
then k ·B is κ-regular. Furthermore,

(k ·B)τ ⊆ Bkτ .

Proof. Note that
(γ/k)(kx) = γ(x).

Therefore,

x ∈ B(Γ, ρ)⇔ ‖ arg(γi(x))/2π‖ ≤ ρi ⇔ ‖ arg((γi/k)(kx))/2π‖ ≤ ρi ⇔ kx ∈ B(Γ/k, ρ).

Thus,
k ·B(Γ, ρ) = B(Γ/k, ρ).

Moreover,
|k ·B(Γ, ρ)| = |B(Γ, ρ)|,

so B(Γ/k, ρ) is κ-regular if B(Γ, ρ) is κ-regular.
Finally, if

‖ arg((γi/k)(kx))/2π‖ ≤ τρi
then

‖ arg(γi(kx))/2π‖ ≤ k‖ arg(γi(x))/2π‖ ≤ kτρi,
so

(k ·B)τ ⊆ Bkτ .
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3 Almost Periodicity

In this section, we discuss Lp almost periodicity results for finite p. The results apply to general groups
with no extra cost. However, since we focus on abelian groups in the subsequent applications, and for
consistency of notations, we will only write the proof in the abelian case. We will roughly follow [13, 6],
however, instead of combinatorial moment estimates for the binomial distribution, we will use exponential
concentration, an idea which also appears in [4].

The crux of the almost periodicity result is that the convolution of a function with a well-structured set,
particularly a set with small expansion under set addition, is almost periodic in a large set of directions.
Note that in particular, this applies to dense subsets of G, which satisfies |A+G| ≤ |G||A| |A|.

Theorem 12 (Lp almost periodicity). There exists a constant C > 0 such that the following holds. Let G
be a group and let l be an integer. Let A,X be subsets of G such that there is a subset S with |S+A| ≤ K|A|,
then there exists a subset T of S with |T | ≥ |S|

2KCpk2/ε2
such that for all t1, t2, · · · , t2k−1, t2k ∈ T ,

‖A ∗X(t1 − t2 + · · ·+ t2k−1 − t2k + ·)−A ∗X(·)‖p ≤ ε
|A|1/2

|G|1/2
‖A ∗X‖1/2p/2 + ε2

|A|
|G|

.

For some examples of sets satisfying the small expansion constraint |S + A| ≤ K|A|, one can take
X to be a set with small doubling, such as a generalized arithmetic progression in Zn, and take A to
be an arbitrary dense subset of X and take S to be X. One can think about almost periodicity as a
way to convert a density/packing condition to an additive condition of Lp almost periodicity on two-fold
convolutions. Indeed, the proof technique we discuss next will be reminiscent of this intuition.

To illustrate the proof technique, we first cover the case p = 2, where things can be done fairly cleanly.
The main idea of the proof is to show that for most C ⊆ A of constant size, mC ∗X(x) is close tomA∗X(x),
so in fact, most C would give us a sufficiently good approximation of mA ∗ X(x). To establish this, we
simply take a random C, and use Chebyshev’s inequality, computing the variance of mC ∗ X(x). Next,
we use the fact that A is structured (having small expansion under addition by S), to say that many of
the good C are translates of a single set. But if ms+C ∗X and mC ∗X are both good approximations for
mA ∗X, then since ms+C ∗X is a translation of mC ∗X, mA ∗X must be approximately invariant under
this translation. This establish one almost period. To get the sumset structure of the almost periods, we
simply use triangle inequality, which tells us that the sum of many good almost periods is only slightly
worse as an almost period.

Theorem 13 (L2 almost periodicity). Let G be a group and let k be an integer. Let A,X be subsets of G
such that there is a subset S with |S + A| ≤ K|A|. Then there exists a subset T of S with |T | ≥ |S|

2K8k2/ε2

such that for all t1, t2, · · · , t2k−1, t2k ∈ T ,

‖A ∗X(t1 − t2 + · · ·+ t2k−1 − t2k + ·)−A ∗X(·)‖2 ≤
ε|A|

√
|X|

|G|
.

Proof. Recall that

mA ∗X(x) =
|G|
|A|

∑
y∈GA(y)X(−y + x)

|G|
.

Let n = d8k2/ε2e. Let ā = (a1, a2, · · · , an) be a tuple of elements of A of size n chosen independently and

uniformly at random. Consider mā(x) = |G|
∑
i≤n I(ai=x)

n . Note that Emā(x) = |G|
n· 1
|A|A(x)

n = |G|A(x)
|A| =

12



mA(x). Thus

mā ∗X(x) =

∑
y∈Gmā(y)X(−y + x)

|G|

=
1

n

n∑
i=1

∑
y

I(ai = y)X(−y + x)

=
1

n

n∑
i=1

X(−ai + x).

Note that X(−ai + x) is 1 if and only if A(ai)X(−ai + x) = 1, so the probability that X(−ai + x) = 1
is exactly mA ∗X(x). Moreover, {X(−ai + x), 1 ≤ i ≤ n} are independent random variables. Thus, we
immediately obtain

E[mā ∗X(x)] = mA ∗X(x),

and

E[(mā ∗X(x)−mA ∗X(x))2]

= E

( 1

n

n∑
i=1

(X(−ai + x)−mA ∗X(x))

)2


=
1

n2

n∑
i=1

E
[
(X(−ai + x)−mA ∗X(x))2

]
=

1

n

[
(1−mA ∗X(x))2 ·mA ∗X(x) + (0−mA ∗X(x))2 · (1−mA ∗X(x))

]
=

1

n

[
mA ∗X(x)− (mA ∗X(x))2

]
.

Hence,

E[(mā ∗X(x)−mA ∗X(x))2] ≤ mA ∗X(x)

n
.

Thus,

E[
∑
x

(mā ∗X(x)−mA ∗X(x))2] ≤ 1

n

∑
x

mA ∗X(x) =
1

n

|G|
|A|
|A||X|
|G|

=
|X|
n
.

By Markov inequality, the probability that
∑

x(mā ∗X(x)−mA ∗X(x))2 ≥ 2|X|
n is at most 1

2 . Thus,
there are at least |A|

n

2 tuples ā such that
∑

x(mā ∗X(x)−mA ∗X(x))2 < 2|X|
n . Let G be the set of such

ā. For each ā ∈ G, let S(ā) = {(s+ a1, s+ a2, · · · , s+ an), s ∈ S}. The tuples (s+ a1, s+ a2, · · · , s+ an)
are distinct for distinct s, and each of them consist of elements in |S +A| ≤ K|A|. Thus, there is a tuple
in
(
S+A
n

)
which occurs in at least |S||A|

n/2
|S+A|n ≥

|S|
2Kn sets S(ā). Let s̄ = (s1, s2, · · · , sn) be such a tuple. Then

there are at least |S|
2Kn distinct tuples ā ∈ G such that s̄ = ā+ t for some t ∈ S. Then for a subset T of S

of size at least |S|
2Kn , for all t ∈ T , we have

∑
x(ms̄−t ∗X(x)−mA ∗X(x))2 ≤ 2|X|

n .
Moreover, for t1, t2 ∈ T ,

m−t2+s̄ ∗X(t1 − t2 + x) =
1

n

n∑
i=1

X(−si + t1 + x) = m−t1+s̄ ∗X(x),
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so by the triangle inequality,

‖mA ∗X(t1 − t2 + ·)−mA ∗X(·)‖2
≤ ‖mA ∗X(t1 − t2 + ·)−m−t2+s̄ ∗X(t1 − t2 + ·)‖2 + ‖m−t1+s̄ ∗X(·)−mA ∗X(·)‖2
= ‖mA ∗X(·)−m−t2+s̄ ∗X(·)‖2 + ‖m−t1+s̄ ∗X(·)−mA ∗X(·)‖2

≤ 2

√
2|X|
n

.

By induction, we now have

‖mA ∗X(t1 − t2 + · · ·+ t2k−1 − t2k + ·)−mA ∗X(·)‖2
≤ ‖mA ∗X(t1 − t2 + · · ·+ t2k−3 − t2k−2 + ·)−mA ∗X(·)‖2 + ‖mA ∗X(t2k−1 − t2k + ·)−mA ∗X(·)‖2

≤ 2k

√
2|X|
n
≤ ε
√
|X|,

by our choice of n.

We now give the proof of the almost periodicity result for general p. As in the proof in the case
p = 2, we only need to establish a concentration result for ‖mā ∗ X −mA ∗ X‖p. This can be obtained
quite accurately since we are simply computing moments of binomial random variables, and these exhibit
strong concentration from Hoeffding’s bound. We give a tight estimate for the exponential concentration
of such random variables. Then we proceed through a standard but somewhat tedious path to get bounds
for moments from this. This is essentially how one can prove Marcinkiewicz inequality, and it can be
applied to a much wider range of distributions. Thus, we think that there is certain benefit in getting
estimates this way rather than more combinatorial methods of obtaining moments for binomial random
variables. The bounds we get are comparable to the best available from direct moment bounds for binomial
random variables. In certain situations, an exponential tail form of almost periodicity instead of Lp almost
periodicity, which is straightforward from our proof, can also be useful. We refer the reader to [4] for further
details.

Proof of Theorem 12. As in the p = 2 case, let ā = (a1, a2, · · · , an) be a tuple of elements of A chosen
independently and uniformly at random, and let mā(x) = |G|

∑
i≤n 1(ai=x)

n . Then

mā ∗X(x) =
1

n

n∑
i=1

X(−ai + x),

where {X(−ai+x), 1 ≤ i ≤ n} are independent Bernoulli random variables which receive the value 1 with
probability mA ∗X(x). Thus µā ∗X(x) is a Binomial random variable, and E[(mā ∗X(x)−mA ∗X(x))p] is
the centered pth moment of such a random variable. Instead of computing this explicitly, we upper bound
the pth moment by the tail bound using exponential concentration.

Assume thatmA∗X(x) > 0, in the casemA∗X(x) = 0, we trivially have E[(mā∗X(x)−mA∗X(x))p] =
0.

Notice that

E[exp(λmā ∗X(x)− λmA ∗X(x))] = E

[
n∏
i=1

exp

(
λ

n
X(−ai + x)− λ

n
mA ∗X(x)

)]

=

n∏
i=1

E

[
exp

(
λ

n
X(−ai + x)− λ

n
mA ∗X(x)

)]
,
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by independence. We can compute

E

[
exp

(
λ

n
X(−ai + x)− λ

n
mA ∗X(x)

)]
= mA ∗X(x) exp

(
λ

n
− λ

n
mA ∗X(x)

)
+ (1−mA ∗X(x)) exp

(
−λ
n
mA ∗X(x)

)
= exp(−λmA ∗X(x)/n) (1 +mA ∗X(x)(exp(λ/n)− 1))

≤ exp(−λmA ∗X(x)/n) exp (mA ∗X(x)(exp(λ/n)− 1)) .

Thus, we get

exp(−λt)E[exp(λmā ∗X(x)− λmA ∗X(x))]

≤ exp

(
−λt− λmA ∗X(x) + nmA ∗X(x)

(
exp

(
λ

n

)
− 1

))
Taking the derivative with respect to λ, the minimum value of ft(λ) = −λ(t + mA ∗ X(x)) + nmA ∗
X(x)

(
exp

(
λ
n

)
− 1
)
is obtained at λt such that exp(λt/n)mA ∗X(x) = t+mA ∗X(x), so

exp(−λtt)E[exp(λtmā ∗X(x)− λtmA ∗X(x))]

≤ exp(−λt(t+mA ∗X(x)) + nt)

= exp(−n(t+mA ∗X(x)) log(1 + t/mA ∗X(x)) + nt).

Noting that λt > 0 for t > 0, by Markov’s inequality, we have

P(mā ∗X(x)−mA ∗X(x) ≥ t) ≤ exp(−λtt)E[exp(λtmā ∗X(x)− λtmA ∗X(x))].

For the lower tail, changing the sign, we get

exp(λt)E[exp(λmā ∗X(x)− λmA ∗X(x))]

≤ exp

(
λt− λmA ∗X(x) + nmA ∗X(x)

(
exp

(
λ

n

)
− 1

))
If 0 ≤ t < mA ∗X(x), taking the derivative with respect to λ, the minimum value of ft(λ) = λ(t−mA ∗
X(x))+nmA ∗X(x)

(
exp

(
λ
n

)
− 1
)
is obtained at λt such that exp(λt/n)mA ∗X(x) = mA ∗X(x)− t. Thus

exp(λtt)E[exp(λtmā ∗X(x)− λtmA ∗X(x))]

≤ exp(λt(t−mA ∗X(x)) + nt)

= exp(−n(mA ∗X(x)− t) log(1− t/mA ∗X(x)) + nt).

Noting that λt < 0 for t > 0, by Markov’s inequality, we have

P(mā ∗X(x)−mA ∗X(x) ≤ −t) ≤ exp(−λtt)E[exp(λtmā ∗X(x)− λtmA ∗X(x))].

If t > mA ∗X(x) then P(mā ∗X(x)−mA ∗X(x) ≤ −t) = 0 since mā ∗X(x) ≥ 0.
Thus, letting u = t/mA ∗X(x), we get

P(|mā ∗X(x)−mA ∗X(x)| ≥ t)
≤ exp(−nmA ∗X(x)[(u+ 1) log(u+ 1)− u]) + I(u ≤ 1) exp(−nmA ∗X(x)[(1− u) log(1− u) + u])

Note that (u+ 1) log(u+ 1)− u is nonnegative and increasing for u ≥ 0,

(u+ 1) log(u+ 1)− u ≥ u2

4
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when 0 ≤ u ≤ 4, and
(u+ 1) log(u+ 1)− u ≥ u

for u ≥ 4. Furthermore, (1− u) log(1− u) + u is nonnegative and increasing for u ∈ [0, 1], and

(1− u) log(1− u) + u ≥ u2

4

for 0 ≤ u ≤ 1. Thus,

E[(mā ∗X(x)−mA ∗X(x))p]

= p

∫ ∞
0

tp−1P(|mā ∗X(x)−mA ∗X(x)| ≥ t)dt

≤ p(mA ∗X(x))p
∫ ∞

0
up−1 exp(−nmA ∗X(x)[(u+ 1) log(u+ 1)− u])du

+ p(mA ∗X(x))p
∫ 1

0
up−1 exp(−nmA ∗X(x)[(1− u) log(1− u) + u])du

≤ 2p(mA ∗X(x))p
∫ 4

0
up−1 exp(−nmA ∗X(x)u2/4)du+ p(mA ∗X(x))p

∫ ∞
4

up−1 exp(−nmA ∗X(x)u)du.

We first observe

p

∫ ∞
4

up−1 exp(−nmA ∗X(x)u)du

≤ p
∫ ∞

0
up−1 exp(−nmA ∗X(x)u)du

= p(p− 1)!(nmA ∗X(x))−p

= p!n−p(mA ∗X(x))−p

≤
( p
en

)p
(mA ∗X(x))−p.

In the range u ≤ 4, ∫ 4

0
up−1 exp(−nmA ∗X(x)u2/4)du

≤ p
∫ ∞

0
up−1 exp(−nmA ∗X(x)u2/4)du

<
p

2
(nmA ∗X(x)/2)−p/2 · (p− 1)!!

<
1

2

(
2p

en

)p/2
(mA ∗X(x))−p/2.

where we used the moment estimate for a Gaussian random variable in the second inequality. Thus,

E[(mā ∗X(x)−mA ∗X(x))p]

<
( p
en

)p
+

(
2p

en

)p/2
(mA ∗X(x))p/2.

Hence,

E[‖mā ∗X(·)−mA ∗X(·)‖pp]

<
( p
en

)p
+

(
2p

en

)p/2
(mA ∗X(x))p/2.

The rest of the proof follows exactly as in the p = 2 case.
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When working with general abelian groups, in particular, cyclic groups, we have to deal more generally
with Bohr sets instead of subgroups. In this case, we usually localize, and therefore need to develop a
version of almost periodicity that localizes over a measure. The proof of this result is essentially identical
to the above proof, though there is extra complication arising from shifting the local measure, particularly
when we use the triangle inequality. Due to the translations involved in applying the triangle inequality
to the local measure, we need the following definition.

Definition 14. For a measure τ , let τ + x be the measure such that (τ + x)(X) = τ(X − x). A measure
ν is an S-upper envelope for a measure τ if and only if

mν(x) ≥ mτ+s(x)

for all x ∈ G and s ∈ S.
Theorem 15. There exists a constant C > 0 such that the following holds. Let G be a group and let k be
an integer. Let A,X be subsets of G such that there is a subset S with |S+A| ≤ K|A|. Let τ be a positive
measure and ν a k(S − S)-upper envelope for τ . Then there exists a subset T of S with |T | ≥ |S|

2KCpk2/ε2

such that for all t1, t2, · · · , t2k−1, t2k ∈ T ,

‖A ∗X(t1 − t2 + · · ·+ t2k−1 − t2k + ·)−A ∗X(·)‖Lp(τ) ≤ ε
|A|1/2

|G|1/2
‖A ∗X‖1/2

Lp/2(ν)
+ ε2
|A|
|G|
‖1‖L1(ν).

Proof. The only change compared to the above proofs is where we apply the triangle inequality, since we
only do a local averaging here and need to be more careful with the change of variables. The above proof
gives

E[(mā ∗X(x)−mA ∗X(x))p] <
( p
en

)p
+

(
2p

en

)p/2
(mA ∗X(x))p/2.

Let ν be an arbitrary positive measure. By averaging x with respect to Lp(ν), we get

E[‖mā ∗X −mA ∗X‖pLp(ν)] <
( p
en

)p
‖1‖L1(ν) +

(
2p

en

)p/2
‖mA ∗X‖p/2Lp/2(ν)

.

Similar to the proof in the case p = 2, we get a tuple s̄ and a subset T of S of size at least |S|
2Kn such that

for all t ∈ T ,

‖ms̄−t ∗X(·)−mA ∗X(·)‖Lp(ν) <
2p

en
‖1‖L1(ν) +

√
4p

en
‖mA ∗X‖1/2Lp/2(ν)

.

Let τ be another measure. Then

‖mA ∗X(t1 − t2 + ·)−mA ∗X(·)‖Lp(τ)

≤ ‖mA ∗X(t1 − t2 + ·)−m−t2+s̄ ∗X(t1 − t2 + ·)‖Lp(τ) + ‖m−t1+s̄ ∗X(·)−mA ∗X(·)‖Lp(τ)

= ‖mA ∗X(·)−m−t2+s̄ ∗X(·)‖Lp(τ+t1−t2) + ‖m−t1+s̄ ∗X(·)−mA ∗X(·)‖Lp(τ).

Similarly,

‖mA ∗X(t1 − t2 + · · ·+ t2k−1 − t2k + ·)−mA ∗X(·)‖Lp(τ)

≤ ‖mA ∗X(t1 − t2 + · · ·+ t2k−1 − t2k + ·)−mA ∗X(t2k−1 − t2k + ·)‖Lp(τ)

+ ‖mA ∗X(t2k−1 − t2k + ·)−mA ∗X(·)‖Lp(τ)

≤ ‖mA ∗X(t1 − t2 + · · ·+ t2k−3 − t2k−2 + ·)−mA ∗X(·)‖Lp(τ+t2k−1−t2k)

+ ‖mA ∗X(t2k−1 − t2k + ·)−mA ∗X(·)‖Lp(τ)

≤ · · ·
≤ ‖mA ∗X(t1 − t2 + ·)−mA ∗X(·)‖Lp(τ+t3−t4+···+t2k−1−t2k)

+ ‖mA ∗X(t3 − t4 + ·)−mA ∗X(·)‖Lp(τ+t5−t6+···+t2k−1−t2k)

+ · · ·+ ‖mA ∗X(t2k−1 − t2k + ·)−mA ∗X(·)‖Lp(τ).
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Thus, if we let ν be a measure such that mν(x) ≥ mτ+k(T−T )(x) for all x, then

‖mA ∗X(t1 − t2 + · · ·+ t2k−1 − t2k + ·)−mA ∗X(·)‖Lp(τ) ≤ k ·

(
2p

en
‖1‖L1(ν) +

√
4p

en
‖mA ∗X‖1/2Lp/2(ν)

)
.

We give some remarks on generalizing the above results from subsets of G to general bounded functions.
In the proof of Theorem 12, we use quite exact information about the exponential moment of binomial
random variables. If we wish to generalize the above results from indicator functions to general bounded
functions, we need to slightly generalize this step. However, we make a simple observation that the
binomial case is essentially the worst case for the exponential moment, thus the same argument would go
through in the general case.

Lemma 16. Let X be a random variable taking values in [0, 1]. Then

E(exp(λX)) ≤ exp(λ)EX + (1−EX).

Proof. Since exp(λ·) is convex,

exp(λx) ≤ x exp(λ) + (1− x) exp(0).

Hence,
E(exp(λX)) ≤ exp(λ)EX + (1−EX).

Using this observation, we can run through the entire argument to replace X by a function f : G →
[0, 1].

The role of A can also be generalized to weighted sets, i.e., we can replace a set A by a function
f : G→ [0, 1]. The assumption |S +A| ≤ K|A| needs to be changed to the condition

E[sup
s∈S

f(x+ s)] ≤ KE[f(x)].

In particular, this holds with K = 1/α for all f : G→ [0, 1] with Ef = α.
The only change in the proof of the almost periodicity results is that we need to sample our n-tuples

of independent elements with probability given by f .

4 Bootstrapping

In this section, we bootstrap the almost periodicity result to obtain a well-structured set of almost periods.
We have so far deduced that convolutions involving a nice set has a large set of almost periods. However, in
the applications that follow, we often have iterative procedures, and we would like to have a set of almost
periods that is more structured so that it can be easily iterated on. To be precise, we will construct a set
of almost periods that is a subspace (in the finite field vector space case), or a Bohr set in the general case.
This sounds daunting given the method we used in the last section, however, our a priori set of almost
periods actually exhibits a fair amount of structure. We obtained a large set of almost periods that contain
a highly iterated sumset of a large set, which is a fairly smooth object (for example, Bogolyubov-Ruzsa
tells us that 2A− 2A contains a large subspace for dense A).

We will exactly use the smoothing effect of taking iterated sumset to deduce a large subspace or Bohr
set of almost periods. In particular, taking sumset corresponds to taking product in the spectral domain,
therefore taking the k-fold sumset of almost periods (which leads to only a polynomial loss in the bound
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on the density of almost periods following the results in the previous section) has an exponential effect
on the Fourier coefficients of the set of almost periods. To get a subspace or Bohr set, we essentially pick
out the large Fourier coefficients of the set of almost periods and construct a subspace or Bohr set which
annihilate the large spectrum. This leaves us with the task of understanding the large Fourier coefficients
of a set, and how to efficiently annihilate the large spectrum. In the finite vector space case (and in fact,
over general abelian groups), this follows from a result known as Chang’s lemma, which gives a bound on
the dimension of the large spectrum that significantly improves over Parseval’s bound in our regime of
interest. The general case is harder, since we have to iterate our argument on Bohr sets, which are not
homogeneous objects like subgroups. Chang’s lemma is generalized to work with sets defined locally on
Bohr sets by an argument of Sanders. This looks more technical, but essentially generalizes the ingredients
that we need in the finite field vector space case. We remark that the generalization of Chang’s lemma to
general abelian groups is in fact straightforward, as we shall see in Subsection 4.1. The main difficulty in
the work of Sanders is to generalized Chang’s lemma from the global setting to the local and relativised
setting of sets defined on Bohr sets. As such, we sometimes refer to Subsection 4.1 as the global setting,
whereas Subsection 4.2 is the local setting. In Subsection 4.1, we exposit Chang’s lemma in the global
setting, and particularly in finite field vector spaces, and use this to obtain our bootstrapped subspace of
almost periods. In Subsection 4.2, we cover Sanders’ generalization of Chang’s lemma [36] and obtain our
bootstrapped Bohr set of almost periods. We draw upon materials from [36, 41, 6].

4.1 Finite field vector spaces

4.1.1 A global version of Chang’s lemma

The ε-spectrum of a function f : G → R is defined by ∆ε(f) = {χ ∈ Ĝ : f̂(χ) ≥ ε‖f‖1}. Parseval’s
identity easily yields an upper bound on the size of the ε-spectrum

|∆ε(f)| ≤
(
‖f‖2
ε‖f‖1

)2

.

This bound is optimal, for example, if f is the indicator function of a subspace V , then f̂(χ) = 0 for
all χ /∈ V ⊥, and f̂(χ) = |V |

|G| for χ ∈ V
⊥. Also, ‖f‖1 = |V |

|G| and ‖f‖2 =
√
|V |
|G| , so |∆ε(f)| = |V ⊥| = |G|

|V |

for ε = 1, which is equal to
(
‖f‖2
ε‖f‖1

)2
. However, observe that while the size of ∆ε(f) is potentially large,

its dimension in the above case is only logp |∆ε(f)|. Thus, the large spectrum is highly structured, and
indeed this intuition is quantified by Chang’s lemma. Note that when f is an indicator function of a set
A of density α, ‖f‖2‖f‖1 = 1√

α
is large. Chang’s lemma shows that in such a case, in fact, the dimension of

∆ε(f) can be more efficiently bounded. This is extremely useful in our forthcoming applications on Roth’s
theorem, as we will work with relatively sparse sets, and we do not want the codimension to grow too fast
when passing to a subspace which is orthogonal to the large spectrum.

Theorem 17 (Chang’s lemma). Let f : Fnp → [0, 1]. Then dim ∆ε(f)� ε−2 log
(

2‖f‖2‖f‖1

)
.

While Theorem 17 is stated over finite field vector spaces, this version of Chang’s lemma generalizes
directly to general abelian groups, which we state at the end of the subsection. Proofs of Chang’s lemma
can be found in [11, 19, 36, 41]. Chang [11] first proved this to prove a better bound on Freiman’s theorem,
though it is remarked that similar ideas can already be found in [8, 33]. Chang’s lemma has proved to be
useful in many other important problems in additive combinatorics, for example, Roth’s theorem [5, 36],
arithmetic progression in sumsets [19], and the structure of boolean functions with small l1 norm [22].
A short proof of Chang’s lemma over Fn2 can be found in [27] using entropy. In fact, one can also show
Chang’s lemma and more refined variants, including Bloom’s version of Chang’s lemma leading to the
best known bound on Roth’s theorem [5], using entropy [28, 44]. We refer the reader to the survey [44]
for more details.
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We give here the standard proof using Rudin’s inequality and duality. We prove that the largest set
of characters that are “independence” in a suitable sense in the large spectrum is small. This tells us that
the dimension of ∆ε(f) must be small. To get a very good upper bound on the number of independent
characters, we show that a function consisting of independent characters must exhibit a fair amount of
cancellation, therefore concentrate around 0 in a suitable sense. In particular, we control the pth moment
of such a function via the 2nd moment of the Fourier coefficients (at the independent characters), and use
duality to control the 2nd moment of the Fourier coefficients using p/(p − 1)th moment of the function,
which is much smaller than Parseval’s bound, yielding the desired upper bound on the dimension of the
large spectrum.

The notion of independence that is sufficient for the proof to work is dissociativity, which is essentially
a weak form of linear independence. While the role of this weaker notion is not clear here, it is essential
to generalize the results to general abelian groups where linear independence is not defined.

Definition 18. A set of vectors Λ is called dissociated if any linear combination of the vectors with
coefficients {−1, 0, 1} where the coefficients are not identically zero is nonzero.

Note that if Λ is dissociated, then for any ω, a : Λ→ C,

Ex
∏
λ∈Λ

(1 + a(λ)<(ω(λ)λ(x))) =
∑

ελ∈{−1,0,1}

Exc(a(λ), |ελ|)
∏
λ

c(ω(λ)λ(x), ελ) = 1,

where c(x, i) =


x, i = 1

x̄, i = −1

1, i = 0

.

We use the above observation to prove Rudin’s inequality, which says that functions formed by a
combination of dissociated characters must have small exponential moment.

Theorem 19. Let Λ be a dissociated set of characters, then

Ex exp

(
σ<(

∑
λ∈Λ

ω(λ)λ(x))

)
≤ eσ2‖ω‖22/2.

Proof. We linearize the exponential function via the basic inequality exp(tx) ≤ coshx+ t sinhx,

Ex exp

(
σ<(

∑
λ∈Λ

ω(λ)λ(x))

)
≤ Ex

∏
λ∈Λ

[
cosh(σ|ω(λ)|) +

<(ω(λ)λ(x))

|ω(λ)|
sinh(σ|ω(λ)|)

]
=
∏
λ∈Λ

cosh(σ|ω(λ)|)Ex
∏
λ∈Λ

(
1 +

sinh(σ|ω(λ)|)
|ω(λ)| cosh(σ|ω(λ)|)

<(ω(λ)λ(x))

)
=
∏
λ∈Λ

cosh(σ|ω(λ)|).

Using coshx ≤ ex2/2, we get the claimed bound.

Rudin’s inequality immediately shows that a combination of dissociated characters cannot receive
large value frequently. To deduce Chang’s lemma from Rudin’s inequality, we use duality, passing from
exponential bound to bounds on Lp norms.

Proposition 20. We have
‖
∑
λ∈Λ

ω(λ)λ‖p ≤ 2p1/2‖ω‖2.

20



Proof. Fix t ≥ 0. From Rudin’s inequality, we have

Px(<(
∑
λ∈Λ

ω(λ)λ) ≥ t) ≤ eσ
2‖ω‖2

L2/2−σt,

which is bounded by exp
(
− t2

2‖ω‖22

)
when σ = t

‖ω‖22
. Replacing ω(λ) with −ω(λ), we get

Px(<(
∑
λ∈Λ

ω(λ)λ) ≤ −t) ≤ eσ2‖ω‖22/2−σt.

Hence,

Px(|<(
∑
λ∈Λ

ω(λ)λ)| ≥ t) ≤ 2 exp

(
− t2

2‖ω‖22

)
.

Replacing ω(λ) with iω(λ), we get

Px(|=(
∑
λ∈Λ

ω(λ)λ)| ≥ t) ≤ 2 exp

(
− t2

2‖ω‖22

)
.

Hence,

Px(

∣∣∣∣∣∑
λ∈Λ

ω(λ)λ

∣∣∣∣∣ ≥ t) ≤ 4 exp

(
− t2

4‖ω‖22

)
.

Therefore,

‖
∑
λ∈Λ

ω(λ)λ‖pp = p

∫ ∞
0

tp−1Px(|
∑
λ∈Λ

ω(λ)λ)| ≥ t)dt

≤ p
∫ ∞

0
tp−1 · 4 exp

(
− t2

4‖ω‖22

)
dt

≤ 4
p

2
(p− 1)!!(2‖ω‖2)p

≤
(

4p‖ω‖22
e

)p/2
Hence,

‖
∑
λ∈Λ

ω(λ)λ‖p ≤ 2p1/2‖ω‖2.

The final step to deduce Chang’s lemma is to use duality. The estimates above say that the map
L2(Λ) → Lp(G) defined by ω 7→

∑
λ∈Λ ω(λ)λ has norm at most 2p1/2. Let q = p

p−1 . Note that the dual
map on the dual spaces Lq(G) → L2(Λ) is g 7→ (ĝ(λ))λ∈Λ, since

∫
Λ ĝ(λ)ω(λ) =

∫
G g(

∑
λ∈Λ ω(λ)λ) by

Parseval’s identity. The following result allows us to pass from the bound on the norm of a linear map to
a bound on the norm of the dual map.

Lemma 21. Let A : X → Y be a bounded linear map, where X,Y are reflexive Banach spaces, then
A∗ : Y ∗ → X∗ defined by A∗l(·) = l(A·) has ‖A∗‖ ≤ ‖A‖.

Proof. Clearly
‖A∗l‖X∗ = sup

‖x‖X≤1
|l(Ax)| ≤ sup

‖x‖X≤1
(‖l‖Y ∗‖Ax‖Y ∗) ≤ ‖A‖‖l‖X∗ .

Hence, ‖A∗‖ ≤ ‖A‖.
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This duality allows us to control the L2 norm of (ĝ(λ))λ∈Λ using the Lq norm of g, immediately yielding
Chang’s lemma.

Proof of Theorem 17. By duality,
(
∑
λ∈Λ

|f̂(λ)|2)1/2 ≤ 2p1/2‖f‖q.

Assume that Λ is a dissociated subset of ∆ε(f), we get∑
λ∈Λ

|f̂(λ)|2 ≥ |Λ|ε2(Exf)2,

so

|Λ| ≤
4p‖f‖2q/‖f‖21

ε2
.

Note that by convexity of norms,
‖f‖q ≤ ‖f‖q−1

2 ‖f‖2−q1 ,

so

|Λ| ≤ 4p(‖f‖2/‖f‖1)2/(p−1)

ε2
.

Choosing p = log(2‖f‖2/‖f‖1) + 1, we get

|Λ| ≤ 50 log(2‖f‖2/‖f‖1)

ε2
.

In particular,

dim ∆ε(f) ≤ 50 log(2‖f‖2/‖f‖1)

ε2
.

The identical proof gives Chang’s lemma over general abelian groups. For this, we need to adapt the
notion of dimension with a spanning notion corresponding to dissociativity.

Theorem 22. Let f : G → [0, 1] for a finite abelian group G. Then there exists a set S of size at most
O
(
ε−2 log

(
2‖f‖2‖f‖1

))
such that

∆ε(f) ⊆ {
∑
s∈S

εss, εs ∈ {−1, 0, 1}}.

Proof. Following the proof of Theorem 17, we find that the largest dissociated subset of ∆ε(f) has size
at most O

(
ε−2 log

(
2‖f‖2‖f‖1

))
. Let S be such a subset. By maximality, for any λ ∈ ∆ε(f), S ∪ {λ} is not

dissociated, hence,
ελλ+

∑
s∈S

εss = 0

for some εs, ελ ∈ {−1, 0, 1}. Since S is dissociated, ελ 6= 0. Hence,

λ = ±
∑
s∈S

εss ∈ {
∑
s∈S

εss, εs ∈ {−1, 0, 1}}.

Thus,
∆ε(f) ⊆ {

∑
s∈S

εss, εs ∈ {−1, 0, 1}}.
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We remark that Chang’s lemma cannot generally be further improved, as shown by Green’s construction
[18], Theorem 50.

Theorem 17 and 22 imply the following results on annihilation of the large spectrum, showing that we
can find a large subspace or Bohr set over which the characters in the large spectrum have value close to
1.

Theorem 23. Let G be an abelian group and f : G → [0, 1]. If G = Fnp , there is a subspace V of
codimension

d� ε−2 log

(
2
‖f‖2
‖f‖1

)
such that for all χ ∈ ∆ε(f) and v ∈ V ,

|1− χ(v)| = 0.

Otherwise, there is a regular Bohr set B of dimension

d� ε−2 log

(
2
‖f‖2
‖f‖1

)
,

and radius

ρ� δε2

log
(

2‖f‖2‖f‖1

) ,
such that for all χ ∈ ∆ε(f) and b ∈ B,

|1− χ(b)| ≤ δ.

Proof. In the case G = Fnp , we simply take V = (∆ε(f))⊥. In the general case, let S be the set from
Theorem 22. Let B = B

(
S, cδε2/ log (2‖f‖2/‖f‖1)

)
for some small constant c. For any χ ∈ ∆ε(f), we

can write
χ =

∑
s∈S

εss.

Thus, for b ∈ B, enumerating S = {s1, · · · , sl},

|1− χ(b)| = |1− (εs1s1)(b) + (εs1s1)(b)(1− (εs2s2)(b)) + · · ·+ (
∑
k≤l−1

εsksk)(b)(1− (εslsl)(b))|

≤
∑
s∈S
|1− (εss)(b)|

≤ cδε2

log (2‖f‖2/‖f‖1)
· |S|

≤ δ,

where the last inequality follows is c is chosen sufficiently small.

4.1.2 Bootstrapping over finite field vector spaces

We now describe how to get the bootstrapped set of almost periods over Fnp . By Theorem 12, we can find
a large set T with the property that

‖A ∗X(x+ z)−A ∗X(x)‖p ≤ ε
|A|1/2

|G|1/2
‖A ∗X‖1/2p/2 + ε2

|A|
|G|

for all z ∈ kT − kT . Notice that when we increase k, the dependency of the almost periodicity result on k
is polynomial. However, repeated sumset has an exponential smoothing effect on the Fourier coefficients.
We pick out the subspace V to be the orthogonal complement of the large spectrum of the set of almost
periods, as in Theorem 23.
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Theorem 24. There exists a constant C > 0 such that the following holds. Let G = Fnp . Let A,X be
subsets of G such that ‖A‖1 ≥ α, then there exists a subspace V of codimension

d ≤ Cpε−2(logα−1)(log ε−1 + logα−1)2

such that for all v ∈ V ,

‖A ∗X(v + ·)−A ∗X(·)‖p ≤ ε
|A|1/2

|G|1/2
‖A ∗X‖1/2p/2 + ε2

|A|
|G|

.

Proof. The core idea of bootstrapping is that the set of almost periods is fairly stable under taking sumsets.
Let k = log(ε−1α−1/2). Let T be the set of almost periods, |T | ≥ |G|

α−Cpk2ε−2 . Let V = span{∆1/2(T−T )}T ,
which by Chang’s lemma, codim(V )� k2ε−2 log(1/α). Let

τ
∗(k)
± (x) = mT ∗m−T ∗ · · · ∗mT ∗m−T (x),

where there are k convolutions of mT ∗m−T . Note that τ∗(k)
± is the density with respect to the uniform

measure on G of a probability distribution supported on kT − kT . We then have

‖A ∗X(v + ·)−A ∗X(·)‖p
≤ ‖A ∗X ∗ τ∗(k)

± (·)−A ∗X(·)‖p + ‖A ∗X ∗ τ∗(k)
± (v + ·)−A ∗X(v + ·)‖p

+ ‖A ∗X ∗ τ∗(k)
± (v + ·)−A ∗X ∗ τ∗(k)

± (·)‖p

≤ 2

(
ε
|A|1/2

|G|1/2
‖A ∗X‖1/2p/2 + ε2

|A|
|G|

)
+ ‖A ∗X ∗ τ∗(k)

± (v + ·)−A ∗X ∗ τ∗(k)
± (·)‖p,

where the second inequality follows since τ∗(k)
± is a probability distribution supported on kT − kT .

Note that for v ∈ V , 1− χ(−v) = 0 for all χ ∈ ∆1/2(T − T ), thus

|A ∗X ∗ τ∗(k)
± (v + x)−A ∗X ∗ τ∗(k)

± (x)| = |
∑
χ

Â(χ)X̂(χ)(m̂T (χ)m̂−T (χ))kχ(−x)(χ(−v)− 1)|

≤
∑
χ

|Â(χ)X̂(χ)(m̂T (χ)m̂−T (χ))k||1− χ(−v)|

≤ 2
∑
χ/∈∆

|Â(χ)X̂(χ)||m̂T (χ)|2k

≤ 2(1/2)2k(
∑
χ

Â(χ)2)1/2(
∑
χ

X̂(χ)2)1/2

≤ 21−2kα1/2.

By our choice of k, we get

|A ∗X ∗ τ∗(k)
± (v + x)−A ∗X ∗ τ∗(k)

± (x)| ≤ ε2 |A|
|G|

.

Thus,

‖A ∗X(v + ·)−A ∗X(·)‖p ≤ 3

(
ε
|A|1/2

|G|1/2
‖A ∗X‖1/2p/2 + ε2

|A|
|G|

)
.

Finally, we replace ε by ε/3 to arrive at the claimed bound.
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4.2 General abelian groups

4.2.1 Annihilating the large spectrum with Bohr sets

In this section, we will cover Sanders’ analog of Chang’s lemma that applies to Bohr sets [36]. Following
[36], we will introduce the tools to prove a local and relativised version of Chang’s lemma where the
function is defined only on a Bohr set. Sanders’ result says that the large spectrum of a function defined
on a Bohr set is annihilated by a large sub-Bohr set of small relative codimension. This is an analog of
the condition of having small codimension in finite field vector spaces, as in Theorem 23.

In the proof of Chang’s lemma over groups, dissociativity is used crucially in Rudin’s inequality, where
we use an averaging over the whole group together with the dissociativity condition. In the upcoming
version of Chang’s lemma with Bohr sets, we cannot average over the whole group, so we instead use the
averaging condition as the definition of dissociativity. In fact, the more complicated averaging operator is
the only change in this setting compared to the previous setting.

Definition 25. Let µ be a probability distribution over G. A set Λ is (K,µ)-dissociated if for all ω : Λ→
C×, ∫

G

∏
λ∈Λ

(1 + <(ω(λ)λ(x)))dµ(x) ≤ exp(K).

By exactly the same proof as in the finite field case, we get the following version of Rudin’s inequality.

Lemma 26. Suppose Λ is (K,µ)-dissociated,∫
G

exp(σ<(
∑
λ∈Λ

ω(λ)λ(x)))dµ(x) ≤ exp(K + σ2‖ω‖22/2).

Proof. Using exp(tx) ≤ coshx+ t sinhx,∫
G

exp(σ<(
∑
λ∈Λ

ω(λ)λ(x)))dµ(x) ≤
∫
G

∏
λ∈Λ

[
cosh(σ|ω(λ)|) +

<(ω(λ)λ(x))

|ω(λ)|
sinh(σ|ω(λ)|)

]
dµ(x)

=
∏
λ∈Λ

cosh(σ|ω(λ)|)
∫
G

∏
λ∈Λ

(
1 + <

(
ω(λ) sinh(σ|ω(λ)|)
|ω(λ)| cosh(σ|ω(λ)|)

λ(x)

))
dµ(x)

≤ exp(σ2‖ω‖22/2 +K).

Deducing the p-moment from exponential concentration as in the global case, we get

‖
∑
λ∈Λ

ω(λ)λ‖Lp(µ) ≤ 2p1/2 exp(K/p)‖ω‖2.

We would like to next deduce using duality an upper bound on the dimension of the large spectrum of
Chang’s type using duality. However, we need to slightly change our definition of the large spectrum since
we are working with a general measure. We define our large spectrum according to what is given by duality.
Note that the dual of the map L2(Λ) → Lp(µ) mapping ω 7→

∑
λ∈Λ ω(λ)λ is the map Lq(µ) → L2(Λ)

mapping g 7→ (ĝmµ(λ))λ∈Λ. Define the large spectrum

∆ε(f) = {χ : |f̂mµ(χ)| ≥ ε‖f‖L1(µ)}.

Via duality, as in the finite field case, we obtain the following bound,

‖(ĝmµ(λ))λ∈Λ‖2 ≤ 2p1/2 exp(K/p)‖g‖Lq(µ),

where q is the conjugate index q = p
p−1 . We use this to bound the largest dissociated subset of the large

spectrum.
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Lemma 27. Let f : G → [0, 1] be a function supported on B. Recall that β denotes the normalized
measure of B, having density mβ(x) = |G|B(x)

|B| with respect to the uniform measure on G. Then any

(1, β)-dissociated subset of ∆ε(f) has size at most O
(

log(2‖f‖L2(β)/‖f‖L1(β))

ε2

)
.

Proof. Let Λ be a (1, β)-dissociated subset of ∆ε(f). By the duality bound,

|Λ|ε2‖f‖2L1(β) ≤ 2p1/2 exp(1/p)‖f‖Lq(µ) ≤ 2p1/2 exp(1/p)‖f‖q−1
L2(µ)

‖f‖2−q
L1(µ)

,

so

|Λ| ≤
4p exp(2/p)(‖f‖L2(β)/‖f‖L1(β))

−2/(p−1)

ε2
.

Choosing p = log(2‖f‖L2(β)/‖f‖L1(β)) + 1, we obtain the claimed bounds.

We have so far created our definitions to match exactly what goes on in the global setting. In the
last step, we need to pass this information back to the Bohr set. It is not a priori clear that our analytic
definition of dissociativity has any relationship to more combinatorial notions of dimension, which allows
for annihilation, as seen in the previous subsection. We will derive directly from analytic dissociativity an
annihilation result, in a way that is quite reminiscent of the covering argument in the previous subsection.

Lemma 28. Assume that B is a κ-regular Bohr set with dimension d with κ ≤ 10−4

d , and S ⊆ Ĝ is a
subset of character so that the largest (1, β)-dissociated subset of S has size at most k. Then there is a
(1, β)-dissociated subset Λ of S such that for all x ∈ Bρ ∩B(Λ, ν) and γ ∈ S,

|1− γ(x)| ≤ C(kν + ρd2(k + 1)).

For a reason that will be clear in the proof of the lemma, we will work with a highly smoothed version
of β instead of working directly with β. Let L be a large constant to be chosen later, and let

mβ+ = mB1+Lρ′ ∗mBρ′ ∗ · · · ∗mBρ′ ,

where there are L terms mBρ′ . Since B is a regular Bohr set, mβ+ is close to mβ . In fact, for x ∈ B,
y1, y2, · · · , yL ∈ Bρ′ , x−

∑L
i=1 yi ∈ B1+Lρ′ , so

mβ+(x) ≥ |G|
|B1+Lρ′ |

≥ |B|
|B1+Lρ′ |

mβ(x).

By regularity of B, |B1+Lρ′ | ≤ (1 + 81dLρ′ + 81dκ)|B|, as long as Lρ′ + κ ≤ 1
81d . Choose ρ′ so that

1
4 ≤ 81d(Lρ′ + κ) ≤ 1

2 and Bρ′ is regular. Since β+ is essentially an upper envelope for β, it is not
surprising that dissociated subsets with respect to β+ are essentially dissociated subsets with respect to
β. In particular,∫

G

∏
λ∈Λ

(1 + <(ω(λ)λ(x)))dβ(x) ≤ 3

2

∫
G

∏
λ∈Λ

(1 + <(ω(λ)λ(x)))dβ+(x)

≤ exp(1/2)

∫
G

∏
λ∈Λ

(1 + <(ω(λ)λ(x)))dβ+(x).

Hence, a set T which is (1/2, β+)-dissociated is (1, β)-dissociated.
We construct Λ via an iterative process. This is essentially an analog of the fact that one can get a

covering result out of a maximal dissociated set used in the previous subsection. We define ηi = i
2(k+1) ,

and construct sets Λi iteratively so that Λi is (ηi, β
+)-dissociated. In particular, we initialize Λ0 = ∅. If

there is γ ∈ S\Λi such that Λi ∪ {γ} is (ηi+1, β
+)-dissociated then we set Λi+1 = Λi ∪ {γ}. If no such γ
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exists, we stop the process. Observe that if the process continues for at least k + 1 steps, then we find a
(1

2 , β
+)-dissociated subset of S of size at least k+1, hence also (1, β)-dissociated, which is a contradiction.

Thus we must have stopped at some step i ≤ k. Then there is a set Λi such that Λi is (ηi, β
+)-dissociated,

but Λi∪{γ} is not (ηi+1, β
+)-dissociated for all γ ∈ S\Λi. We let Λ = Λi and prove that it has the desired

property.

Proof of Lemma 28. By our construction, for all γ ∈ S\Λ, we can find ω : Λ ∪ {γ} → C× such that∫
G

(1 + <(ω(γ)γ(x)))
∏
λ∈Λ

(1 + <(ω(λ)λ(x)))dβ+(x) > exp(ηi+1).

However, ∫
G

∏
λ∈Λ

(1 + <(ω(λ)λ(x)))dβ+(x) ≤ exp(ηi).

Thus, ∫
G
<(ω(γ)γ(x))

∏
λ∈Λ

(1 + <(ω(λ)λ(x)))dβ+(x) > exp(ηi+1)− exp(ηi).

We have ∫
G
<(ω(γ)γ(x))

∏
λ∈Λ

(1 + <(ω(λ)λ(x)))dβ+(x)

=
∑

εγ∈{±1},ελ∈{0,±1}

c(ω(γ), εγ)
∏
λ∈Λ

c(ω(λ), ελ)

∫
c(γ(x), εγ)

∏
λ∈Λ

c(λ(x), ελ)dβ+(x)

=
∑

εγ∈{±1},ελ∈{0,±1}

c(ω(γ), εγ)
∏
λ∈Λ

c(ω(λ), ελ)m̂β+(εγγ +
∑
λ∈Λ

ελλ).

Thus,

exp(ηi+1)− exp(ηi) ≤
∑

εγ∈{±1},ελ∈{0,±1}

∣∣∣∣∣m̂β+(εγγ +
∑
λ∈Λ

ελλ)

∣∣∣∣∣
≤

∑
εγ∈{±1},ελ∈{0,±1}

∣∣∣∣∣m̂Bρ′ (εγγ +
∑
λ∈Λ

ελλ)

∣∣∣∣∣
L

= 2
∑

ελ∈{0,±1}

∣∣∣∣∣m̂Bρ′ (γ −
∑
λ∈Λ

ελλ)

∣∣∣∣∣
L

.

Choosing L = dlog2 3k2(k + 1)e, and note that

exp(ηi+1)− exp(ηi) = exp

(
i+ 1

2(k + 1)

)
− exp

(
i

2(k + 1)

)
≥ 1

2(k + 1)
,

we get supελ∈{0,±1} |m̂Bρ′ (γ −
∑

λ∈Λ ελλ)| ≥ 1
2 . Let χ = γ −

∑
λ∈Λ ελλ where |m̂Bρ′ (χ)| ≥ 1

2 . Note that if
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x ∈ Bρ for ρ ≤ ρ′

80d , then

|m̂Bρ′ (χ)(1− χ(x))| = 1

|Bρ′ |

∣∣∣∣∣∑
y

(χ(y)− χ(x+ y))Bρ′(y)

∣∣∣∣∣
=

1

|Bρ′ |

∣∣∣∣∣∣
∑
y∈Bρ′

χ(y)−
∑

y∈Bρ′+x
χ(y)

∣∣∣∣∣∣
≤
|Bρ′+ρ\Bρ′−ρ|
|Bρ′ |

≤ 160d
ρ

ρ′
,

by regularity of Bρ′ . Thus,
|1− χ(x)| ≤ 320dρ/ρ′.

Enumerating Λ = {λ1, · · · , λi}, and using the triangle inequality, we get

|1− γ(x)| = |1− χ(x)(
i∑

j=1

ελjλj)(x)|

≤ |1− χ(x)|+
i∑
l=1

|χ(x)|
l−1∏
j=1

|λl(x)| · |1− λl(x)|

≤ |1− χ(x)|+
i∑

j=1

|1− λj(x)|.

Thus, if x ∈ Bρ ∩B(Λ, ν),
|1− γ(x)| ≤ 320dρ/ρ′ + k2πν.

Plugging in ρ′ ≥
1

640d
−κ

L ≥ 10−3

dL and L = dlog2 3k2(k + 1)e, we get the desired conclusion for all γ ∈ S\Λ.
For γ ∈ Λ, the conclusion is obvious.

Combining Lemma 27 and 28 readily gives the proof of the following relativised version of Chang’s
lemma.

Theorem 29. There exists a constant C such that the following holds. Let B be a κ-regular Bohr set with
dimension d, radius ρ, and κ ≤ 10−4/d. Let f : B → [0, 1] be a function defined on B. We can find a
Bohr set B′ of dimension

d′ ≤ d+ C
log(‖f‖L2(β)/‖f‖L1(β))

ε2
,

and radius

ρ′ ≥ c ρδε2

d2 log(‖f‖L2(β)/‖f‖L1(β))
,

such that for all χ ∈ ∆ε(f) and x ∈ B′,
|1− χ(x)| ≤ δ.

Furthermore, when f = T is the indicator function of a set T , then

‖f‖L2(β)/‖f‖L1(β) = |B|/|T |.
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4.2.2 Bootstrapping over abelian groups

In the following, we assume that G is an abelian group of odd order, so the map γ ∈ Ĝ 7→ γ/2 ∈ Ĝ is
well-defined. The next theorem is the general relativised bootstrapping analog of Theorem 24.

Theorem 30. There exists a constant C > 0 such that the following holds. Let B be a κ-regular Bohr
set of dimension d and radius ρ where κ ≤ 10−4

d . Let µ be so that µ ≤ 10−3

d log(αε)−1 and Bµ is regular. Let

β̄ be the measure supported on B1+2µ log(αε)−1 with density mβ̄(x) = |G|
B1+2µ log(αε)−1 (x)

|B| with respect to the
uniform measure on G. Let B̃ be a regular Bohr set such that Bη ⊆ B̃θη for all 1/θ ≥ η ≥ 0. Let A be a
subset of B̃ such that ‖A‖L1(B̃) ≥ α. Assume that log(ε−1α−1)µdθ ≤ 10−4.

Then there exists a Bohr set B′ with dimension

d′ ≤ d+ Cpε−2 log(ε−1α−1)2 logα−1,

and radius

ρ′ ≥ cµρ ε6α1/2

pd2 log(ε−1α−1)2 logα−1
,

such that for all b ∈ B′,

‖A ∗X(b+ ·)−A ∗X(·)‖Lp(B) ≤ ε
|A|1/2

|G|1/2
‖A ∗X‖1/2

Lp/2(β̄)
+ ε2
|A|
|G|

.

Proof. The proof follows the same ideas as in the finite field case. Let k = log(ε−1α−1), S = Bµ. Then
B + k(S − S) ⊆ B1+2kµ, so

|S +A| ≤ |B̃ +B2kµ| ≤
|B̃1+2kµθ|
|B̃|α

|A| ≤ 1 + 320kµdθ

α
|A| ≤ 2

α
|A|.

Let T be the set of almost periods in Theorem 15, |T | ≥ |S|
α−Cpk2ε−2 . Note that β̄ is a k(S − S)-upper

envelope for β, and

‖1‖Lp(β̄) =
|B1+2kµ|
|B|

≤ 2.

Let
τ
∗(k)
± (x) = mT ∗m−T ∗ · · · ∗mT ∗m−T (x),

where there are k convolutions of mT ∗m−T .
Then

‖A ∗X(b+ ·)−A ∗X(·)‖Lp(B)

≤ ‖A ∗X ∗ τ∗(k)
± (·)−A ∗X(·)‖Lp(B) + ‖A ∗X ∗ τ∗(k)

± (b+ ·)−A ∗X(v + ·)‖Lp(B)

+ ‖A ∗X ∗ τ∗(k)
± (b+ ·)−A ∗X ∗ τ∗(k)

± (·)‖Lp(B)

≤ 2

(
ε
|A|1/2

|G|1/2
‖A ∗X‖1/2

Lp/2(β̄)
+ 2ε2

|A|
|G|

)
+ ‖A ∗X ∗ τ∗(k)

± (b+ ·)−A ∗X ∗ τ∗(k)
± (·)‖Lp(B).

Note that

|A ∗X ∗ τ∗(k)
± (b+ x)−A ∗X ∗ τ∗(k)

± (x)|

= |
∑
χ

Â(χ)X̂(χ)(m̂T (χ)m̂−T (χ))kχ(−x)(χ(−b)− 1)|

≤
∑
χ

|Â(χ)X̂(χ)(m̂T (χ)m̂−T (χ))k||1− χ(−b)|.
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By Theorem 29, we can find a Bohr set B′ with dimension

d′ ≤ d+ C log
|Bµ|
|S|
≤ d+ Cpk2ε−2 logα−1

and radius

ρ′ ≥ cµρ ε2δ

d2pk2ε−2 logα−1

such that for all χ ∈ ∆1/2(T ), b ∈ B′,
|1− χ(−b)| ≤ δ.

Then for b ∈ B′,

|A ∗X ∗ τ∗(k)
± (b+ x)−A ∗X ∗ τ∗(k)

± (x)|

≤ δ
∑

χ∈∆1/2(T )

|Â(χ)X̂(χ)|+ 2(1/2)2k
∑

χ/∈∆1/2(T )

|Â(χ)X̂(χ)|

≤ max(δ, 21−2k)

√
|A|
|G|
|X|
|G|

.

Choose δ = ε2α1/2, and by our choice of k, we get

|A ∗X ∗ τ∗(k)
± (b+ x)−A ∗X ∗ τ∗(k)

± (x)| ≤ ε2 |A|
|G|

.

Hence,

‖A ∗X ∗ τ∗(k)
± (b+ ·)−A ∗X ∗ τ∗(k)

± (·)‖Lp(B) ≤ ε2
|A|
|G|

.

Replacing ε by ε/8, we arrive at the required conclusion.

The above theorem is not convenient to use due to the measure β̄. Using regularity, we can replace β̄
by β, at the cost of a worse bound on the radius. We remark that the following theorem, as stated, only
applies to regular Bohr sets and not κ-regular Bohr sets.

Theorem 31. There exists a constant C > 0 such that the following holds. Let B be a regular Bohr set
of dimension d and radius ρ. Let B̃ be a regular Bohr set such that Bη ⊆ B̃θη for all 1/θ ≥ η ≥ 0. Let A
be a subset of B̃ such that ‖A‖L1(B̃) ≥ α. Assume that θ ≤ α−3ε−3.

Then there exists a Bohr set B′ with dimension

d′ ≤ d+ Cpε−2 log(ε−1α−1)2 logα−1,

and radius

ρ′ ≥ cρ
(

εp+1α

pd log(ε−1α−1) logα−1

)6

,

such that for all b ∈ B′,

‖A ∗X(b+ ·)−A ∗X(·)‖Lp(B) ≤ ε
|A|1/2

|G|1/2
‖A ∗X‖1/2

Lp/2(B)
+ ε2
|A|
|G|

.
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Proof. We need to control ‖A ∗ X‖1/2
Lp/2(β̄)

in terms of ‖A ∗ X‖1/2
Lp/2(B)

by choosing µ in Theorem 30

appropriately. Note that A ∗X(x) ≤ |A||G| , and

‖A ∗X‖p/2
Lp/2(β̄)

= ‖A ∗X‖p/2
Lp/2(B)

+
1

|B|
∑

x∈B1+2kµ\B

|A ∗X(x)|p/2

≤ ‖A ∗X‖p/2
Lp/2(B)

+ 160dkµαp/2.

Thus,

‖A ∗X(b+ ·)−A ∗X(·)‖Lp(B) ≤ ε
|A|1/2

|G|1/2
‖A ∗X‖1/2

Lp/2(B)
+ ε2
|A|
|G|

+ (160dkµ)1/pε
|A|
|G|

.

Choosing µ = εp

160kd , we get

‖A ∗X(b+ ·)−A ∗X(·)‖Lp(B) ≤ 2

(
ε
|A|1/2

|G|1/2
‖A ∗X‖1/2

Lp/2(B)
+ ε2
|A|
|G|

)
.

Replacing ε by ε/2, we arrive at the conclusion.

5 Roth’s theorem over finite field vector spaces

5.1 The density increment strategy

The density increment strategy dates back to Roth’s original proof [32] of the existence of three-term
arithmetic progressions in dense subsets of the integers, using Fourier analysis. The simpler proof in the
finite field setting was obtained by Meshulam [30]. The rough idea is that if a set A behaves like a random
set, then A necessarily contains many three-term arithmetic progressions. If A contains significantly
fewer three-term arithmetic progressions, then A must have increased density on a structured set. The
notion of pseudorandomness in the original proofs of Roth’s theorem that suffices to control three-term
arithmetic progression density is Fourier uniformity. The increment accordingly proceeds via analysis of
the Fourier coefficients in the spectral domain. In later subsections, we will replace this crucial step by
almost periodicity and obtain density increment directly from the physical space without going into the
spectral domain. Of course, one may say that spectral analysis is still crucial in bootstrapping. However,
in this form, it has much less effect on the density increment step. In this subsection, we first lay out the
basic framework behind the density increment, and record the dependency of the quantitative bound in
the final density on the parameters in the density increment step.

Theorem 32. Let P be a property of subsets of Fnp which is translation invariant and upward closed, i.e.,
for each t ∈ Fnp , A has P iff A+ t has P, and if A has P then all A′ ⊇ A has P. Assume that the following
holds. Given any subset A of Fnp with density α and P does not hold, then either n < C log(Cα−1) or there
exists a subspace V of codimension bounded by Cα−µ(logCα−1)m and x such that A ∗mV (x) ≥ (1 + c)α.

Then any set A of Fnp which does not have P must have density at most C32(C, c, µ,m)(log n)m/µn−1/µ.

Proof. The proof follows from a simple iteration. Assume that the set A we start with does not have
P. Assume that n > C log(Cα−1). Let α be the density of A, then we can find a subspace V1 of
codimension at most Cα−µ(logCα−1)m and a translate of the subspace where the density of A is at
least (1 + c)α. By translation invariance, we can restrict our attention to the subspace V1

∼= Fn1
p with

n1 ≥ n − α−µ(logα−1)m, and A1 = A ∩ (V1 + x1) having density α1 ≥ (1 + c)α in V1 + x1. By upward
closeness of P, A1 does not have P. As long as n1 > C log(Cα−1

1 ), we can find a subspace V2 of V1 of
codimension at most Cα−µ1 (logCα−1

1 )m < Cα−µ(logCα−1)m and a translate of V2 where A1 ∩ (V2 + x2)
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has density α2 ≥ (1 + c)α1 in V1. This can be iterated as long as dimVi > C log(Cα−1
i ). Note that the

number of iterations is bounded above by log1+c(1/α) since clearly the density of a set Ai in Vi is at most
1. Moreover dimVi ≥ n− C

∑i
j=1 α

−µ
j (logCα−1

j )m. Thus, at the last step t before the iteration is forced
to terminate, we must have

n− C
t∑
i=1

α−µi (logCα−1
i )m ≤ C logCα−1,

where αi+1 ≥ (1 + c)αi for all i < t, so

n ≤ C log(Cα−1) + C ′α−µ(logCα−1)m.

Hence, we can easily check that

α ≤ C32(log n)m/µ

n1/µ
,

for some constant C32 depending on C, c, µ,m.

In the next subsections, we will turn to establish the density increment condition in Theorem 32,
thereby establishing Roth’s theorem in this setting. We note that over the finite field setting, much better
bounds for Roth’s theorem are known using the polynomial method [12, 16], which is a completely different
framework from what we discuss here. There, it is shown that the largest subset of Fnp with no nontrivial
three-term arithmetic progression has size at most (cpp)

n for a constant cp < 1. However, the polynomial
method cannot be applied to the general abelian groups while what we describe here generalizes to general
abelian groups via standard techniques. In fact, such a strong bound is not true in general abelian groups,
where the Behrend construction gives a lower bound which is strictly bigger than any power smaller than
1 of the group size. The methods we discuss will lead to a bound of the form Cpn(log n)4/n, which
is much weaker. In fact, the bound we obtain is weaker than Meshulam’s bound, which has the form
Cpn/n. However, this method directly generalizes to essentially the best bound for the problem over
general abelian groups. Thus, one should think about the results in this section as being the model for
the argument over general abelian groups instead of focusing on the exact quantitative bounds.

This section is based on materials from [6, 38].

5.2 Roth’s theorem in finite field vector spaces

In this section, we will prove the density increment condition in Theorem 32, using the bootstrapped
version of almost periodicity to replace spectral analysis.

Theorem 33. Let p be an odd prime. Let A be a subset of Fnp with density α. If Ex,dA(x)A(x+ d)A(x+

2d) < α3

2 , we can find a subspace V of codimension at most Cα−1(logCα−1)4 such that there exists a
translate V + x of V where |A∩(V+x)|

|V | ≥ 3
2α.

Proof. By the hypothesis,

Ex,dA(x)A(x+ d)A(x+ 2d) = ExA ∗A(x)(2 ·A)(x) <
α3

2
.

Using the almost periodicity result, we get a good approximation of A∗A which is a constant function
on translates of a large subspace. In particular, apply Theorem 24 with p = 20 log(α−1), we get a subspace
V of codimension at most Cpε−2(logα−1)(log ε−1 + logα−1)2 such that

‖A ∗A ∗mV −A ∗A‖p ≤ ε
√
α‖A ∗A‖1/2p/2 + ε2α.
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Our argument will proceed as follows. Assuming that ‖A∗A‖1/2p/2 is sufficiently small, then A∗A is well-
approximated by A∗A∗mV , which is much smoother. We can show that if there is no density increment in
a translate of V , then A∗A∗mV is essentially close to α, meaning that the value of ExA∗A∗mV (x)(2·A)(x)

is close to α3, so ExA ∗A(x)(2 ·A)(x) is also large. On the other hand, if ‖A ∗A‖1/2p/2 is large, we directly
get density increment, since this implies that ‖A ∗A ∗mV ‖p is large.

Let c = 1/2. Our aim is to show that there exists x such that A∗mV (x) ≥ (1+c)α. Assume otherwise
that ‖A∗mV ‖∞ < (1 + c)α. By a basic averaging argument, we will show that A∗A∗mV (x) ≥ (1− c2)α2

for all x. Indeed, notice that mV ∗mV = mV , and ExA ∗mV (x) = α. Moreover, by our assumption, for
all y, z,

[(A ∗mV )(y)− (1 + c)α][(A ∗mV )(z)− (1 + c)α] ≥ 0,

so
(A ∗mV )(y)(A ∗mV )(z) ≥ (1 + c)α[(A ∗mV )(y) + (A ∗mV )(z)]− (1 + c)2α2.

By averaging this inequality,

A ∗A ∗mV (x) = (A ∗mV ) ∗ (A ∗mV )(x)

= Ey(A ∗mV )(y)(A ∗mV )(x− y)

≥ (1 + c)αEy[(A ∗mV )(y) + (A ∗mV )(x− y)]− (1 + c)2α2

= 2(1 + c)α2 − (1 + c)2α2

≥ (1− c2)α2.

Thus,
ExA ∗A ∗mV (x)(2 ·A)(x) ≥ (1− c2)α2Ex(2 ·A)(x) = (1− c2)α3.

The fact that A ∗A ∗mV approximates A ∗A in Lp allows us to pass this approximate information to
a lower bound on ExA ∗A(x)(2 ·A)(x). By Holder’s inequality,

|Ex(A ∗A−A ∗A ∗mV (x))(2 ·A)(x)| ≤ ‖A ∗A−A ∗A ∗mV ‖p‖(2 ·A)‖p/(p−1)

≤ ε
√
α(‖A ∗A‖1/2p/2 + ε

√
α)α1−1/p

If ‖A ∗A‖p/2 ≤ 10α2, then choosing ε =
√
α/100, we get

|Ex(A ∗A−A ∗A ∗mV (x))(2 ·A)(x)| ≤ α3/4,

so
ExA ∗A(x)(2 ·A)(x) ≥ (1− c2 − 1/4)α3 = α3/2,

which contradicts the assumption.
Consider the case ‖A ∗ A‖p/2 > 10α2. Choose ε =

√
α/100. Then, ‖A ∗ A‖p ≥ ‖A ∗ A‖p/2 > 10α2, so

we get

‖A ∗A ∗mV ‖p ≥ ‖A ∗A‖p − ‖A ∗A ∗mV −A ∗A‖p
≥ ‖A ∗A‖p − ε

√
α‖A ∗A‖1/2p/2 − ε

2α

≥ ‖A ∗A‖1/2p (‖A ∗A‖1/2p − α/100)− α2/1002

> 5α2.

However, if ‖A∗mV ‖∞ ≤ (1 + c)α then ‖A∗A∗mV ‖∞ = ‖A∗mV ∗A∗mV ‖∞ ≤ (1 + c)2α2, contradicting
the above inequality.

Corollary 34. The largest subset of Fnp with no nontrivial three-term arithmetic progression has size at
most pn(log n)4/n.
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Proof. This follows from Theorem 32 and 33. In particular, let P be the property of containing a nontrivial
three-term arithmetic progression, and note that if A does not have P, then

Ex,dA(x)A(x+ d)A(x+ 2d) ≤ |A|
|G|2

,

so

Ex,dA(x)A(x+ d)A(x+ 2d) <
α3

2

as long as n > 2 log(2α−1).

5.3 Behrend-type bound for Roth’s theorem in four variables over finite field vector
spaces

In this section, we show that for Roth’s theorem in four variables x+ y + z = 3w, we have a much better
quantitative bound from almost periodicity, matching the form of Behrend’s lower bound. Notice that
the number of solutions to x+ y = 2z can be rewritten as |G|2Ex,yA(x)A(y)(2 · A)(x+ y). However, the
number of solutions to x+y+z = 3w is at least |G|2Ex,yA(x)(A+A)(y)(3 ·A)(x+y). The main difference
between Roth’s theorem in four (or more) variables and Roth’s theorem in three variables is that in four
variables, we get to replace one copy of A with A+ A . For an unstructured set A with reasonably large
density, A+A is expected to have constant density in G, which makes the convolution (A+A) ∗A much
simpler to understand. In particular, since A+A is dense, (A+A) ∗A has order α. To obtain an almost
periodicity result of the right order on (A+A) ∗A, we can take ε to be small constant, noting that upper
bounds on (A+A) ∗A can be obtained trivially by majorizing A+A by G, losing only a constant factor.
This allows us to obtain the much better quantitative bound with a simpler proof.

Theorem 35. Let p be a prime coprime to 6. Let A be a subset of Fnp with density α. If Ex,yA(x)(A +

A)(y)(3 ·A)(x+ y) < α2

16 , we can find a subspace V of codimension at most C(logCα−1)4 such that there
exists a translate V + x of V where |A∩(V+x)|

|V | ≥ 3
2α.

Proof. The proof follows along the lines of the proof of Theorem 33. However, we get extra saving here
due to the fact that we can expect (A+A) to have constant density. By the hypothesis,

Ex,yA(x)(A+A)(y)(3 ·A)(x+ y) = ExA ∗ (A+A)(x)(3 ·A)(x) <
α2

16
.

Apply Theorem 24 with p = log2(α−1), we get a subspace V of codimension at most Cpε−2(logα−1)(log ε−1+
logα−1)2 such that

‖A ∗ (A+A) ∗mV −A ∗ (A+A)‖p ≤ ε
√
α‖A ∗ (A+A)‖1/2p/2 + ε2α.

Since ‖(A+A) ∗A‖p/2 ≤ ‖G ∗A‖p/2 = α,

‖A ∗ (A+A) ∗mV −A ∗ (A+A)‖p ≤ 2εα.

Let c = 1/12. If there exists x such that A ∗mV (x) ≥ (1 + c)α, we are done. Assume otherwise that
‖A ∗mV ‖∞ < (1 + c)α. Since ExA ∗mV (x) = α, this means that A ∗mV (x) ≥ 3α

4 for at least a 3
4 -fraction

of x ∈ G.
If |A+A| ≥ |G|2 , then for all x,

(A+A) ∗A ∗mV (x) ≥ 1

4

3α

4
>
α

8
,

34



so

Ex(A+A) ∗A ∗mV (x)(3 ·A)(x) >
α2

8
.

By Holder’s inequality,

|Ex((A+A) ∗A− (A+A) ∗A ∗mV (x))(3 ·A)(x)|
≤ ‖(A+A) ∗A− (A+A) ∗A ∗mV ‖p‖3 ·A‖p/(p−1)

≤ 2εαα1−1/p

By choosing ε = 1
64 , we get

|Ex((A+A) ∗A− (A+A) ∗A ∗mV (x))(3 ·A)(x)| ≤ α2

16
,

so

Ex(A+A) ∗A(x)(3 ·A)(x) ≥ α2

8
− α2

16
=
α2

16
,

which contradicts the assumption.
Consider the case |A+A| < |G|

2 . Observe the crucial property that for x ∈ −A,

(−A−A) ∗A(x) = Ey(−A−A)(x− y)A(y) = EyA(y) = α.

The intuition is that if |A+A| is small, then we expect (−A−A) ∗A to be much smaller than α. Indeed,
smoothing out by the subspace of almost periods V , we get (−A − A) ∗ A ∗mV is much smaller than α,
assuming no density increment on a translate of V . Since (−A−A) ∗A ∗mV is close to (−A−A) ∗A, we
get a contradiction by taking an inner product against A, using Holder’s inequality as usual. We now go
back to the rigorous argument.

We apply the almost periodicity result, Theorem 24, with ε = 1/16 to get

‖(−A−A) ∗A ∗mV − (−A−A) ∗A‖p ≤
α

8
.

By Holder’s inequality

|Ex((−A−A) ∗A ∗mV (x)− (−A−A) ∗A(x))(−A)(x)| ≤ α

8
α1−1/p ≤ α2

4
.

Hence,

Ex(−A−A) ∗A ∗mV (x)(−A)(x) ≥ Ex(−A−A) ∗A(x)(−A)(x)− α2

4

= α2 − α2

4

=
3α2

4
,

where the first equality follows from our previous observation that (−A − A) ∗ A(x) = α for x ∈ −A.
However, if ‖A ∗mV ‖∞ ≤ (1 + c)α then

‖(−A−A) ∗A ∗mV ‖∞ ≤ ‖A ∗mV ‖∞‖(−A−A)‖1 ≤
1 + c

2
α =

13α

24
,

so

Ex(−A−A) ∗A ∗mV (x)(−A)(x) ≤ 13α2

24
,

contradicting the above inequality.
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Corollary 36. The largest subset of Fnp with no nontrivial solution to x + y + z = 3w has size at most
n exp(−c(log n)1/4).

Proof. This follows from Theorem 32 and 35. In particular, let P be the property of containing a nontrivial
solution to x+ y + z = 3w, and note that if A does not have P, then

Ex,yA(x)(A+A)(y)(3 ·A)(x+ y) ≤ |A|
|G|2

,

so

Ex,yA(x)(A+A)(y)(3 ·A)(x+ y) <
α2

16

as long as n > log(16α−1).

6 Roth’s theorem in general abelian groups

6.1 The density increment strategy

We use a similar density increment strategy to prove Roth’s theorem over general abelian groups. The
technical details in the general setting are much more complicated than those in the finite field vector
space model. In general abelian groups, subspaces are replaced by Bohr sets, which are more complicated
due to their non-homogeneity. When dealing with Bohr sets, it is crucial to localize on different Bohr sets
at appropriate scales to make use of the regularity condition of Bohr sets, which allows us to treat Bohr
sets as subgroups in a certain way. For this reason, the density increment step needs to take into account
the different scales that we need in order to run the argument. Again, we follow [6].

Theorem 37. Let G be an abelian group of size n. Let P be a property which is translation invariant and
upward closed. Let w,m, µ, k, C,C ′, c be constants. Assume that the following holds. Let A be a subset of
a regular Bohr set B = B(Γ, ρ) with density α in B. Let A′ be a subset of A such that A′ ⊆ Bν , where
Bν is regular and νd ≤ 10−4, and the density of A′ in Bν is at least α. Assume that either P holds, or
|B(Γ, ρ)| < Cα−w, or there exists a Bohr set B′′(Γ′′, ρ′′) of codimension bounded by

d+ Cαµ(logCα−1)m

and radius
ρ′′ ≥ cρν exp(−C ′(logCα−1)k)

and x such that A ∗mB′′(x) ≥ (1 + c)α.
Then any set A without P must have size at most C37n(log log n)(m+1)/µ(log n)−1/µ.

Proof. Before starting the proof, we remark that there are many constants involved which are not quan-
titatively important. The reader only needs to keep in mind that all of them are absolute constants that
depend only on the constants given in the theorem statement in an appropriate way. The proof follows
from a simple iteration of the assumption. However, to match the situation in the assumption, from a
dense subset of a Bohr set, we need to find a pair of Bohr sets with one being smaller, where the set is
dense in both sets in the pair. Let c′′, c̃ be small positive constants depending on c and α to be chosen
later. Let c′ be a positive constant chosen so that (1 + c)(1 − c′) > 1. Let c′′, c̃ be positive constants
depending on c′ and α. We first guarantee the existence of this pair of Bohr sets.
Claim 38. There exists a choice of c′′, c̃, c′ such that given A of density α in B, either we can find two
Bohr sets B1 = Bδ1 , B2 = Bδ2 such that B1, B2 are regular, c̃/2 ≤ δ1d ≤ c̃ and c̃δ1/2 ≤ δ2d ≤ c̃δ1, and
A ∗mB1(x) ≥ (1 − c′)α and A ∗mB2(x) ≥ (1 − c′)α; or we can find increment max{‖A ∗mB1‖∞, ‖A ∗
mB2‖∞} ≥ (1 + c′′)α.
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Proof of Claim 38. Choose δ1, δ2 so that c̃/2 ≤ δ1d ≤ c̃ and c̃δ1/2 ≤ δ2d ≤ c̃δ1 and Bδ1 , Bδ2 are regular.
If there exists x such that A ∗mB1(x) > (1 + c′′)α or A ∗mB2(x) > (1 + c′′)α then we are done. Assume
otherwise that A ∗mB1(x) ≤ (1 + c′′)α and A ∗mB2(x) ≤ (1 + c′′)α for all x. By Proposition 10,

Ex∈BA ∗mB1(x) ≥ α− 80c̃ ≥ (1− 80c̃

α
)α.

Let c′ = c′′

3 + 320c̃
3α and choose c′′, c̃ sufficiently small so that (1 − c′)(1 + c) > 1. It is easy to check that

the choice of c′ guarantees that at least a 3
4 -fraction of x ∈ B satisfies A ∗mB1(x) ≥ (1− c′)α. Similarly,

at least a 3
4 -fraction of x ∈ B satisfies A ∗mB2(x) ≥ (1 − c′)α. Thus, there must exists x ∈ B such that

A ∗mB1(x) ≥ (1− c′)α and A ∗mB2(x) ≥ (1− c′)α. This finishes the proof of the claim.

Assume that the set A we start with does not have P, and assume that |G| > Cα−w. By Claim 38, we
either find a smaller Bohr set where we have density increment, or we can find a pair of Bohr sets where
A has relative density at least (1− c′)α in both sets in the pair, and we can apply the assumption in the
theorem statement. This gives a Bohr set B′′ and a translate of B′′ where the density of A is at least
(1 + c)(1− c′)α. Then, in both cases, we can find a translate of a Bohr set B′′ of codimension at most

Cαµ(logCα−1)m

and radius at least
cρ exp(−C ′(logC ′α−1)k)

such that the density of A in an affine translate of B′′ is at least min{(1+c)(1−c′)α, (1+c′′)α} = (1+τ)α
for some absolute constant τ > 0. Let B1 = B′′ and A1 = A∩ (B1 + x) where the density of A1 in B1 + x
is at least (1 + τ)α. We then iterate this process.

The number of iterations is bounded above by logα−1 since clearly the density of a set in an affine
translate of a Bohr set is at most 1. Moreover the dimension of Bi satisfies the bound

di ≤ di−1 + Cα−µi (logCα−1
i )m,

and the radius of Bi satisfies the bound

ρi ≥ c̄ρi−1 exp(−C ′(logC ′α−1
i )k)/di.

Here 1 ≥ αi ≥ (1 + τ)αi−1. Thus, by summing the geometric series,

di ≤
i−1∑
j=0

Cα−µj (logCα−1
j )m ≤ C̃α−µ(log C̃α−1)m.

Let t be the last step before the iteration is forced to terminate. Then t ≤ C̄ log(C̄α−1). The final radius
satisfies the bound

ρt ≥ exp(t log c̄−
t∑
i=1

C ′(logC ′α−1
i )k −

t∑
i=1

log di) ≥ exp(−C̃ ′(log C̃ ′α−1)k+1).

Hence,

|Bt| ≥ |G| exp(−C̃ ′′α−µ(log C̃ ′′α−1)m+k+1).

Moreover, we must have
|Bt| ≤ Cα−w,

so
n ≤ Cα−w exp(C̃ ′′α−µ(log C̃ ′′α−1)m+k+1).

From this, we can easily check that for n sufficiently large,

α ≤ C37
(log log n)(m+k+1)/µ

(log n)1/µ
.
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6.2 Roth’s theorem in general abelian groups

In this subsection, we establish the density increment condition in Theorem 37. The ideas model the proof
in the finite field vector space setting, however replacing subspaces with Bohr sets at the appropriate
scales. We first give in a simple version following [6], which is simple and clean but involving a wasteful
step. This leads to a slightly worse quantitative bound for Roth’s theorem. In Subsection 6.2.2, we
discuss our attempt to avoid the wasteful step, leading to a better quantitative bound. Exactly the same
bound is achieved by an argument of Sanders [35] using almost periodicity coupled with the Katz-Koester
transform. Though this proof is longer, the Katz-Koester transform is itself very interesting, and thus we
give this proof in Subsection 6.2.3.

6.2.1 The first attempt

In this section, we discuss the density increment lemma for Roth’s theorem in general abelian groups
following [6], which yields a slightly worse quantitative bound, but provides a good illustration of the
ideas and techniques involved.

Theorem 39. Let B = B(Γ, ρ) be a regular Bohr set of dimension d, and let B′ = Bν be a regular Bohr
set where νd ≤ 10−6. Let A ⊆ B and A′ ⊆ B′ such that β(A) ≥ α and β′(A′) ≥ α. If EA(x)A′(x +

d)A(x+ 2d) < α3

2 ββ
′, we can find a regular Bohr set B′′ of codimension at most

d+O(α−1(logα−1)4)

and radius at least

cρν
αO(logα−1)

d2
,

such that there exists a translate B′′ + x of B′′ where |A∩(B′′+x)|
|B′′| ≥ 9

8α.

Proof. By assumption,

Ex,dA(x)A′(x+ d)A(x+ 2d) = ExA ∗A(x)(2 ·A′)(x) <
α3

2
ββ′.

Let p = log2 α
−1. By Proposition 11, 2 · B′ is regular Bohr set and (2 · B′)η ⊆ B′2η ⊆ B2ην . Apply

Theorem 31 with the sets A30 = A,X30 = A, B̃30 = B, and B30 = 2 · B′, we get a regular Bohr set B′′0
such that for all b′′ ∈ B′′0 ,

‖A ∗A(b′′ + ·)−A ∗A(·)‖Lp(2·B′) ≤ ε
|A|1/2

|G|1/2
‖A ∗A‖1/2

Lp/2(2·B′) + ε2
|A|
|G|

.

For a reason which will be clear in the course of the proof, we let B′′ be a regular Bohr set such that
B′′ ⊆ (B′′0 )1/2, so B′′ +B′′ ⊆ B′′0 . We can choose B′′ to satisfy the required bounds on the dimension and
radius, and furthermore,

‖A ∗A ∗mB′′ ∗mB′′ −A ∗A‖Lp(2·B′) ≤ ε
|A|1/2

|G|1/2
‖A ∗A‖1/2

Lp/2(2·B′) + ε2
|A|
|G|

.

As in the finite field case, the general scheme for the proof is as follows. We first establish a lower bound
on A∗A∗mB′′ ∗mB′′ assuming no density increment. Then, assuming ‖A∗A‖1/2

Lp/2(2·B′) is small, we obtain

that ExA ∗A(x)(2 ·A′)(x) ≈ ExA ∗A ∗mB′′ ∗mB′′(x)(2 ·A′)(x) ≈ α3ββ′. If otherwise ‖A ∗A‖1/2
Lp/2(2·B′) is

large, we directly obtain density increment by proving ‖A∗A∗mB′′ ∗mB′′‖Lp(B′) is large. The only reason
we use two copies of mB′′ in the convolution is that in the finite field vector space case, mV ∗mV = mV ,
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however, this is not true for Bohr sets, but can easily be achieved by reducing the radius of the Bohr set
by a constant factor.

Let c = 1/8. Assume that ‖A ∗mB′′‖∞ ≤ (1 + c)α. Then for all x, y,

((1 + c)α−A ∗mB′′(x))(((1 + c)α−A ∗mB′′(y)) ≥ 0.

Furthermore, by Proposition 10, we have

Et∈B+B′′A ∗mB′′(t) ≥
α

1 + 80νd
,

and for x ∈ 2 ·B′ ⊆ B2ν ,

Et∈B+B′′A ∗mB′′(x− t)

≥ α

1 + 162d · 4ν
− 400d · 6ν

≥ 15α

16
.

Thus,

A ∗A ∗mB′′ ∗mB′′(x) = EtA ∗mB′′(t)A ∗mB′′(x− t)

≥ |B +B′′|
|G|

Et∈B+B′′A ∗mB′′(t)A ∗mB′′(x− t)

≥ (1 + c)αβEt∈B+B′′ [A ∗mB′′(t) +A ∗mB′′(x− t)− (1 + c)α]

≥ (1 + c)αβ ·
(

15

8
α− 9

8
α

)
≥ 3

4
α2β.

By Holder’s inequality,

|G|
|B′|

Ex(A ∗A ∗mB′′ ∗mB′′ −A ∗A)(x)(2 ·A′)(x) ≤ ‖A ∗A ∗mB′′ ∗mB′′ −A ∗A‖Lp(B′)‖2 ·A′‖Lq(B′).

Hence,

E(A ∗A ∗mB′′ ∗mB′′ −A ∗A)(2 ·A′) ≤ β′
(
ε
√
αβ‖A ∗A‖1/2

Lp/2(2·B′) + ε2αβ
)
α1/q

≤ 2β′αε(
√
αβ‖A ∗A‖1/2

Lp/2(2·B′) + εαβ).

If ‖A ∗A‖Lp/2(2·B′) ≤ 10α2β, picking ε = α1/2/4, we get

E(A ∗A ∗mB′′ ∗mB′′ −A ∗A)(2 ·A′) ≤ α3ββ′/4.

Thus,

ExA ∗A(x)(2 ·A′)(x) ≥ ExA ∗A ∗mB′′ ∗mB′′(x)(2 ·A′)(x)− α3ββ′

4

≥ 3

4
α2βEx(2 ·A′)(x)− α3ββ′

4

=
α3ββ′

2
.
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Otherwise, ‖A ∗ A‖Lp/2(2·B′) > 10α2β, so ‖A ∗ A‖Lp(2·B′) ≥ ‖A ∗ A‖Lp/2(2·B′) > 10α2β. Choosing
ε = α1/2/4,

‖A ∗A ∗mB′′ ∗mB′′‖Lp(2·B′) ≥ ‖A ∗A‖Lp(2·B′) − ε
√
αβ‖A ∗A‖1/2

Lp/2(2·B′) − ε
2αβ

≥ ‖A ∗A‖Lp(2·B′)/2

> 2α2β.

If ‖A ∗mB′′‖∞ ≤ (1 + c)α then noticing that A ∗mB′′ is supported on B +B′′, we have

‖A ∗A ∗mB′′ ∗mB′′‖pLp(2·B′) =
1

|B′|
∑
x∈B′

(EtA ∗mB′′(t)A ∗mB′′(x− t))p

≤ 1

|B′|
|B′|

(
|B +B′′|
|G|

(1 + c)2α2

)p
≤ (2βα2)p,

contradiction.

Corollary 40. The largest subset of Zn with no nontrivial three-term arithmetic progression has size at
most Cn(log log n)7/ log n.

Proof. Let P be the property of not containing a nontrivial three-term arithmetic progression. If |A
′|

|B′| >
9
8α

then we immediately obtain density increment. Otherwise, assume that A contains no nontrivial three-
term arithmetic progression. Then

Ex,dA(x)A′(x+ d)A(x+ 2d) ≤ |A
′|

|G|2
≤ 9

8

αβ′

|G|
<
α3ββ′

2
,

as long as |B| > 3α−2. We get the desired bound from Theorem 37.

6.2.2 Improving the number of log log factors

We would like to improve the quantitative bound in the previous subsection and remove one log log factor.
This coincides with the best known bound using almost periodicity for Roth’s theorem by Sanders [35].

To get the improvement, we will refine our bound on the radius of the Bohr set in each step of the
increment. We used a clean form of the bootstrapping result (Theorem 31) in the previous subsection,
but this leads to a large loss in the radius of the Bohr set. By using instead Theorem 30 and κ-regular
Bohr sets, we can get a better quantitative bound. This is the only place that we need our nonstandard
notion of κ-regular Bohr set.

Theorem 41. Let B = B(Γ, ρ) be a regular Bohr set of dimension d, and let B′ = Bν be a regular Bohr
set where νd ≤ 10−6. Let A ⊆ B and A′ ⊆ B′ such that β(A) ≥ α and β′(A′) ≥ α. If Ex,dA(x)A′(x +

d)A(x+ 2d) < α3

2 ββ
′, we can find a regular Bohr set B′′ of codimension at most

d+O(α−1(logα−1)4)

and radius at least
cρν

(α
d

)O(1)
,

such that there exists a translate B′′ + x of B′′ where |A∩(B′′+x)|
|B′′| ≥ 17

16α.
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Proof. The proof follows the lines of the proof given in the previous subsubsection. We will highlight the
main differences.

Let p = log2 α
−1. Apply Theorem 30 with the sets A30 = A,X30 = A, B̃30 = B, B30 = 2 · B′, and

τ30 = τ to be chosen later, we get a regular Bohr set B′′0 such that for all b′′ ∈ B′′0 ,

‖A ∗A(b′′ + ·)−A ∗A(·)‖Lp(2·B′) ≤ ε
|A|1/2

|G|1/2
‖A ∗A‖1/2

Lp/2(β̄′)
+ ε2
|A|
|G|

,

where β̄′ is a measure with mass mβ̄′(x) = |G|
(2·B′)1+2τ log(αε)−1 (x)

|2·B′| . Let B′′ be a regular Bohr set such that
B′′ ⊆ (B′′0 )1/2, so B′′ +B′′ ⊆ B′′0 . Then

‖A ∗A ∗mB′′ ∗mB′′ −A ∗A‖Lp(2·B′) ≤ ε
|A|1/2

|G|1/2
‖A ∗A‖1/2

Lp/2(β̄′)
+ ε2
|A|
|G|

.

In the case ‖A∗A‖Lp/2(β̄′) ≤ 10α2β, we proceed exactly as in the proof of Theorem 39 to get a translate

of B′′ where |A∩(B′′+x)|
|B′′| ≥ 9

8α.
Consider the case ‖A ∗ A‖Lp/2(β̄′) > 10α2β, and assume that ‖A ∗mB′′‖∞ ≤ 9

8α. First, consider the
case ‖A ∗A‖Lp(2·B′) ≥ ‖A ∗A‖Lp/2(2·B′) > ‖A ∗A‖Lp/2(β̄′)/3. Choose ε = α1/2/16, we get

‖A ∗A ∗mB′′ ∗mB′′‖Lp(2·B′) ≥ ‖A ∗A‖Lp(2·B′) − ε
√
αβ‖A ∗A‖1/2

Lp/2(β̄′)
− ε2αβ

≥ 2‖A ∗A‖Lp(2·B′)/3

> 2α2β.

We arrive at a contradiction as in the proof of Theorem 39.
Otherwise, we have ‖A ∗A‖Lp/2(2·B′) ≤ ‖A ∗A‖Lp/2(β̄′)/3. This is the only case where we do not arrive

directly at density increment, but it gives a significant increment on the norm of A ∗A by passing to only
a slightly larger Bohr set. Let B′1 = B′1+2τ log(αε)−1 . Let κ1 = 2τ log(αε)−1. Then B′1 is κ1-regular and

‖A ∗A‖Lp/2(2·B′1) =

(
|B′|
|B′1|

)2/p

‖A ∗A‖Lp/2(β̄′) ≥ max{2‖A ∗A‖Lp/2(2·B′), 5α
2β}.

We want to replace B′ with B′1 and run through the same argument. Note that

β′1(A′) ≥ α |B
′|

|B′1|
≥ α

1 + 320τ log(αε)−1
.

Since Theorem 30 applies to κ-regular Bohr sets for κ ≤ 10−4/d, as long as κ1 ≤ 10−4/d and (1 +
κ1)νd ≤ 10−4, we can repeat the same argument as above with B′ replaced by B′1 and α replaced by
α1 = α

1+320τ log(αε)−1 .
Iterate the argument above, we obtain Bohr sets B′i = B′∏i

j=0(1+2τ log(αiε)−1)
which are κi-regular for

κi =
∏i
j=0(1 + 2τ log(αiε)

−1)− 1, and

‖A ∗A‖Lp/2(2·B′i)
≥ 2i−1‖A ∗A‖Lp/2(2·B′1) ≥ 2i−1 · 5α2β,

and furthermore
β′i(A

′ ∩B′i) ≥ αi =
αi−1

1 + 320τ log(αiε)−1
.

We terminate the process when κid > 10−4, or (1+κi)νd > 10−4, or ‖A∗A‖Lp/2(2·B′i)
≥ ‖A∗A‖Lp/2(2·B′i+1)/2.
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Note that ‖A∗A‖∞ ≤ αβ, we get that we must terminate after at most C ′ log(1/α) iterations. Choose
τ = c′(log(αε)−3d)−1. For all i ≤ C ′ log(1/α), we have by induction that

αi ≥ αi−1(1− 320τ log(αiε)
−1) ≥ αi−1(1− 640τ log(αε)−1) ≥ (1− 640τ log(αε)−1)iα,

since
(1− 640τ log(αε)−1)iα ≥ α2.

Thus log(αiε)
−1 ≤ 2 log(αε)−1 for all i ≤ C ′ log(1/α). Furthermore

i∏
j=0

(1 + 2τ log(αiε)
−1) ≤ (1 + 4τ log(αε)−1)C log(1/α) < 1 + 10−4/d < 2,

so κid ≤ 10−4 and (1 + κi)νd ≤ 10−4 for all i ≤ C ′ log(1/α). Thus, upon termination, we must have
‖A ∗A‖Lp/2(2·B′i)

≥ ‖A ∗A‖Lp/2(2·B′i−1)/2.
In this case, by the argument above, we immediately get a density increment

|A ∩B′′i |
|B′′i |

≥ 9

8
αi >

9

8
α(1− 640τ log(αε)−1)C log(1/α) ≥ 17

16
α

on a translate of B′′i , where the codimension of B′′i is at least

d+O(α−1
i (logα−1

i )4) = d+O(α−1(logα−1)4)

and the radius of B′′i is at least

cρτ
αO(1)

d2
= cρ

(
α

log(α−1)d

)O(1)

.

This completes the argument.

This improved density increment step immediately gives an improved bound on Roth’s theorem.

Corollary 42. The largest subset of Zn with no nontrivial three-term arithmetic progression has size at
most Cn(log log n)6/ log n.

6.2.3 Improving the number of log log factors via the Katz-Koester transform

In this subsection, we exposit a different way to arrive at the same bound as in the previous subsection
from the work of Sanders [35]. In fact, this result is key in Sanders’ proof, since he used a much weaker
version of almost periodicity. While it does not give an improvement on the quantitative bound, it uses
an interesting result, the Katz-Koester transform. The main purpose of this subsection is to introduce the
Katz-Koester transform, following [35]. The main idea of the Katz-Koester transform is to replace sets
A,A′ by sets L and S such that L+ S ⊆ A+A′, but L has constant density while S has density not too
small. As observed in Subsection 5.3, constant density sets allow us to run almost periodicity arguments
much more easily. The core of the argument is the following simple observation. Given L and S such that
L+ S ⊆ A+A′, for any x ∈ G, (L ∪ (A− x)) + (S ∩ (x−A′)) ⊆ A+A′. This increases the density of L,
and as long as the density of S does not decrease too much, we can iterate this argument to obtain the
desired constant density set L. Thus, we aim to find x such that |L∪ (A− x)| = |L|+ |(A− x)\L| is large
while |S ∩ (x−A′)| is not too small. If A is not very structured, we expect many x to satisfy |(A− x)\L|
is large. Moreover, by averaging, few x satisfy that S ∩ (x − A′) has density decreasing by more than a
factor of 2/α′. Thus, we must be able to find x for which |(A− x)\L| is large and |S ∩ (x−A′)| is not too
small.

Before going into the details of the Katz-Koester transform, we briefly comment on how it leads directly
to more efficient almost periodicity results. Almost periodicity gives ‖A′ ∗ A ∗ mB′′ − A′ ∗ A‖Lp(B) ≤
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ε2αβ′+ ε
√
αβ′‖A′ ∗A‖1/2

Lp/2(β̄)
. In using almost periodicity to prove Roth’s theorem, we needed to separate

the cases where ‖A′ ∗A‖Lp/2(β̄) is large or small, with the case where it is small being easier. If A′, A both
have density α, it is crucial that ‖A′ ∗A‖Lp/2(β̄) is much smaller than the trivial bound (on the supremum
of A′ ∗A) and closer to the bound when A′ and A behave like random sets. However, if we replace A′ by
S and A by L where L has constant density (using S ∗L as a lower bound for A′ ∗A), we get no saving in
using the trivial bound or the bound when S and L behave like random sets. Thus, we remove the need
to estimate ‖S ∗ L‖Lp/2(β̄) and use the trivial bound instead, allowing for an easier argument.

We now state the iterative step to obtain the Katz-Koester transform.

Lemma 43. Let B,B′, B′′ be regular Bohr sets. Assume that B,B′, B′′ has dimension bounded by d, B
has radius ρ, B′ ⊆ Bν′ and B′′ ⊆ B′ν′′ where 10−8 ≤ ν ′d, ν ′′d ≤ 10−4. Let A ⊆ B, A′ ⊆ B′ be such that
β(A) ≥ α and β′(A′) ≥ α. Let L ⊆ B, S ⊆ B′′ be such that β(L) = λ and β′′(S) = σ. Assume that λ ≤ c
for an absolute constant c. Then one of the following must hold.

1. There is a regular Bohr set B′′′ of codimension at most

d+O(α−1 logα−1)

and radius at least
ρ
(α
d

)O(1)

such that ‖A ∗mB′′′‖∞ ≥ α(1 + c).

2. There is a set L′ ⊆ B and S′ ⊆ B′′ with β′(L′) ≥ λ + α/4 and β′′(S′) ≥ ασ/2 such that for all
x ∈ G,

L′ ∗ S′(x) ≤ L ∗ S(x) +A ∗A′(x).

The proof of the lemma follows from the heuristics we discussed above.

Lemma 44. Using the same set-up as Lemma 43, if more than α|B′|/8 elements x ∈ B′ has

L ∗ (−A)(x) ≥ αβ/2,

then there is a regular Bohr set B′′′ ⊆ Bν′′′ with ν ′′′d ≤ 10−4, having codimension at most

d+O(α−1 logα−1)

and radius at least
ρ
(α
d

)O(1)

such that ‖A ∗mB′′′‖∞ ≥ α(1 + c).

Proof. Let T = {x ∈ B′ : L ∗ (−A)(x) ≥ αβ/2} and assume that |T | ≥ α|B′|/8. We have

ExL ∗ (−A)(x)T (x) ≥ |T |
|G|

αβ/2.

Since we work with local information, we need to normalize −A. Observe that

ExL ∗B(x)T (x) = Ex,yL(y)T (x)[B(x− y)− (B +B′)(x− y)] + Ex,yL(y)T (x)(B +B′)(x− y)

= Ex,yL(y)T (x)[B(x− y)− (B +B′)(x− y)] + λβ|T |/|G|,
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since (B +B′)(x− y) = 1 for all y ∈ L ⊆ B, x ∈ T ⊆ B′. By regularity,

|Ex,yL(y)T (x)[B(x− y)− (B +B′)(x− y)]| ≤ Ex,zT (x)|B(z)− (B +B′)(z)|

=
|T |
|G|
|(B +B′)\B|

|G|
≤ 80dνβ|T |/|G|

≤ 1

8
β|T |/|G|.

Thus,

ExL ∗ [(−A)− αB](x)T (x) ≥ |T |
|G|

αβ

4
,

assuming λ is small enough. Then∑
χ

L̂(χ)(−̂A− αB̂)(χ)T̂ (χ) ≥ |T |
|G|

αβ

4
.

By Cauchy-Schwartz, ∑
χ

|(−̂A− αB̂)(χ)T̂ (χ)|2 ≥ (αβ|T |/4|G|)2

λβ
=
α2β|T |2

16λ|G|2
.

Furthermore, ∑
χ/∈∆

α1/2
(T )

|(−̂A− αB̂)(χ)|2|T̂ (χ)|2 ≤ α |T |
2

|G|2
∑
χ

|−̂A(χ)− αB̂(χ)|2

=
α|T |2

|G|2
(αβ + α2β − 2α(αβ)β)

≤ 2α2β|T |2

|G|2
.

Assuming λ is sufficiently small, we get∑
χ∈∆

α1/2
(T )

|(−̂A− αB̂)(χ)|2|T̂ (χ)|2 > 2α2β|T |2

|G|2
.

Thus, ∑
χ∈∆

α1/2
(T )

|(−̂A− αB̂)(χ)|2 > 2α2β.

This non-uniformity in the Fourier coefficients of Â allows us to get density increment. By Theorem
29, we can find a Bohr set B′′′ such that |1− χ(x)| ≤ 1

2 for all x ∈ B′′′ and χ ∈ ∆α1/2(T ). Then

∑
χ∈∆

α1/2
(T )

|(−̂A− αB̂)(χ)|2|m̂B′′′(χ)|2 ≥ α2β

2
.

But this can be rewritten as

Ex|((−A)− αB) ∗mB′′′(x)|2 ≥ α2β

2
.
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We have

Ex|((−A)− αB) ∗mB′′′(x)|2

= Ex|(−A) ∗mB′′′(x)|2 + α2Ex|B ∗mB′′′(x)|2 − 2αEx(−A) ∗mB′′′(x)B ∗mB′′′(x)

= Ex|(−A) ∗mB′′′(x)|2 − α2Ex|B ∗mB′′′(x)|2 + 2α[ExB ∗mB′′′(x)α− ExB ∗mB′′′(x)(−A) ∗mB′′′(x)].

We have
ExB ∗mB′′′(x) = ExEy∈B′′′B(x− y) = βEz∈B,y∈B′′′1 = β,

and furthermore, B ∗mB′′′ is supported on B +B′′′ and for x ∈ B1−ν′′′ ,

B ∗mB′′′(x) = Ey∈B′′′B(x− y) = 1.

Since

ExB ∗mB′′′(x)(−A) ∗mB′′′(x)

=
1

|G|

 ∑
x∈B1+ν′′′

(−A) ∗mB′′′(x)−
∑

x∈B1+ν′′′\B1−ν′′′

(1−B ∗mB′′′(x))(−A) ∗mB′′′(x)

 ,
and by Proposition 10, ∑

x∈B1+ν′′′

(−A) ∗mB′′′(x) = |A|,

so

|ExB ∗mB′′′(x)(−A) ∗mB′′′(x)− αβ| ≤ 1

|G|
∑

x∈B1+ν′′′\B1−ν′′′

(−A) ∗mB′′′(x)

≤ |B1+ν′′′\B1−ν′′′ |
|G|

≤ 160βdν ′′′.

Thus
|ExB ∗mB′′′(x)α− ExB ∗mB′′′(x)(−A) ∗mB′′′(x)| ≤ 160βdν ′′′.

Similarly,
α2Ex|B ∗mB′′′(x)|2 ≥ (1− 10−3)α2β.

Assuming ν ′′′ < cα/d, we get

Ex|(−A) ∗mB′′′(x)|2 ≥ 5

4
α2β.

Hence,

‖(−A) ∗mB′′′‖∞ ≥
5

4
α,

since Ex(−A) ∗mB′′′(x) = αβ.
It is easy to check that B′′′ can be chosen to satisfy the required bounds on the codimension and

radius.

Next, we turn to show that a large fraction of elements x satisfy S ∗A(x) is not too small by a simple
averaging argument.

Lemma 45. Using the same set-up as Lemma 43, at least α|B′|/4 elements x ∈ B′ satisfies S∗(−A′)(−x) ≥
σα/2.
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Proof. As in Proposition 10

Ex(B′ +B′′)(−x)S ∗ (−A′)(−x) =
|S||A′|
|G|2

≥ σαβ′′β′.

By regularity,

ExB′(−x)S ∗ (−A′)(−x) ≥ σαβ′′β′ − σβ′′ |(B
′ +B′′)\B′|
|G|

≥ σαβ′′β′

1 + 10−3
,

assuming ρ′′/ρ′ ≤ cd/α.
Thus the number of x ∈ B′ with S ∗ (−A′)(−x) ≥ σαβ′′/2 is at least α|B′|/4, since ‖S ∗ (−A′)‖∞ ≤

σβ′′.

Proof of Lemma 43. Combining Lemma 44 and Lemma 45, we either get increment, or we get at least one
element x ∈ B′ such that

L ∗ (−A)(−x) ≤ αβ/2,

and
S ∗ (−A′)(x) ≥ σαβ′′/2.

Define L′ = L ∪ (A− x) and S′ = S ∩ (A′ + x). Then

β(L′) ≥ λ+ β((A− x) ∩B)− α/2 ≥ λ+ α/2− |(B +B′)\B|
|B|

≥ λ+ α/4,

and
β′′(S′) ≥ ασ/2.

Finally,

L′ ∗ S′(y) ≤ L ∗ S′(y) + (A− x) ∗ S′(y)

≤ L ∗ S(y) + (A− x) ∗ (A′ + x)(y)

≤ L ∗ S(y) +A ∗A′(y).

We initiate L = ∅ and S = B′′. By iterating Lemma 43 at most O(α−1) times, we obtain the Katz-
Koester transform.

Theorem 46 (Katz-Koester transform). Let B,B′, B′′ be regular Bohr sets. Assume that B,B′, B′′ has
dimension bounded by d, B has radius ρ, B′ ⊆ Bν′ and B′′ ⊆ B′ν′′ where 10−8 ≤ ν ′d, ν ′′d ≤ 10−4. Let
A ⊆ B, A′ ⊆ B′ be such that β(A) ≥ α and β′(A′) ≥ α. Then one of the following must hold.

1. There is a regular Bohr set B′′′ of codimension at most

d+O(α−1 logα−1)

and radius at least
ρ
(α
d

)O(1)

such that ‖A ∗mB′′′‖∞ ≥ α(1 + c).

2. There exists L ⊆ B and S ⊆ B′′ such that β(L) ≥ Ω(1), β′′(S) ≥ αO(α−1) such that for all y

L ∗ S(y) ≤ O(α−1)A ∗A′(y).
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This is a relativised version of the heuristics we described at the beginning of the subsection.
With this result at hand, we can use almost periodicity to give an alternative proof of Theorem 41.

With the same setting as in Theorem 41, we can equivalently write

ExA ∗A(x)(2 ·A′)(x) = ExA ∗ (2 ·A′)(x)(−A)(x).

We can find sets L, S as in Theorem 46, or density increment. Assume that we can find L and S. Let
β(L) = λ, β′′(S) = σ. Apply Theorem 31 with p31 = log(1/α), ε31 = c(λ) an absolute constant, A31 = S,
X31 = L, B̃31 = B′′ and B31 = B (note that Bη ⊆ B′′θη for θ ≤ c/d3 which can be assumed to be smaller
than α−3), we get a Bohr set B′′′ such that

‖S ∗ L− S ∗ L ∗mB′′′ ∗mB′′′‖Lp(B) ≤ 2ε2
|S|
|G|
≤ cλσβ′′.

If
Ex∈BS ∗ L(x)(−A)(x) ≥ λσβ′′α/2,

we also get a lower bound on EA ∗ (2 ·A′)(x)(−A)(x). Assume otherwise, then

Ex∈BS ∗ L ∗mB′′′ ∗mB′′′(x)(−A)(x) ≤ 3λσαβ′′

4
.

But
Ex∈BS ∗ L ∗mB′′′ ∗mB′′′(x)(−A)(x) =

1

β
ExS ∗ L ∗mB′′′(x)(−A) ∗mB′′′(x).

Furthermore, by regularity,
Ex∈BS ∗ L ∗mB′′′(x) ≥ (1− c)λσβ′′,

and
Ex∈BmB′′′ ∗ (−A)(x) ≥ (1− c)α.

Hence,

Ex∈B(α−mB′′′ ∗ (−A)(x))S ∗ L ∗mB′′′(x) ≥ λσαβ′′

4
.

Assuming that ‖mB′′′ ∗ (−A)‖∞ ≤ (1 + c)α, we get

Ex∈B|α−mB′′′ ∗ (−A)(x)| ≤ 2cα.

Thus

|Ex∈B(α−mB′′′ ∗ (−A)(x))S ∗ L(x)| ≤ ‖S ∗ L‖∞Ex∈B|α−mB′′′ ∗ (−A)(x)| ≤ σβ′′ · 2cα.

Choosing c appropriately (depending on the absolute constant lower bound for λ), we arrive at the desired
contradiction.

Let us now consider the quantitative bound coming from this argument. If we can find sets L and S,
the Bohr set where we get increment as codimension at most d + O(α−1(logα−1)4) (since σ ≥ αO(α−1)),

and radius at least cρ
(

1
d logα−1

)O(1)
. In our application, d is certainly on the order of α−Θ(1)(logα−1)Θ(1).

If we instead get increment within the Katz-Koester transform, then we get increment on a Bohr set of
codimension at most d + O(α−1 logα−1) and radius at least cρ

(
α
d

)O(1). Combining these gives exactly
the same quantitative bound for Roth’s theorem as in the previous subsection. We note that the claimed
bound in [35] is n(log log n)5/ log n. However, we think that this is not possible. At the first step of the
iteration, the Bohr set has dimension Ω(α−1(logα−1)4). In each subsequent step, the radius of this Bohr
set can shrink by a factor of α−Ω(1). Thus, after logα−1 iterations, the density of the Bohr set can be as
small as O(exp(−α−1(logα−1)6)).
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6.3 Behrend-type bound for Roth’s theorem in four variables over general abelian
groups

In this subsection, we show that for Roth’s theorem in four variables, we again have a Behrend-type upper
bound on the density of sets avoiding nontrivial solutions to the equation x+ y + z = 3w. The rationale
behind the improved quantitative bound is due to the appearance of A+ A in the convolutions, which is
expected to be dense in the Bohr set, exactly as in the finite field vector space case of Subsection 5.3.

Theorem 47. Let B = B(Γ, ρ) be a regular Bohr set of dimension d, and let B′ = Bν where ν ≤
10−6/d. Let A ⊆ B and A′ ⊆ B′ such that β(A) ≥ α and β′(A′) ≥ α. Assume that A′ ⊆ A. If
ExA ∗ (A+A)(x)(3 ·A′)(x) < α2ββ′

8 , we can find a regular Bohr set B′′ of codimension at most

d+O((logα−1)4)

and radius at least
cρναO(1)

such that there exists a translate B′′ + x of B′′ where |A∩(B′′+x)|
|B′′| ≥ 17

16α.

Proof. Let p = logα−1. Apply Theorem 31 with the sets A30 = A,X30 = A+A, B̃30 = B, and B30 = 3·B′,
we get a regular Bohr set B′′0 such that for all b′′ ∈ B′′0 ,

‖A ∗ (A+A)(b′′ + ·)−A ∗ (A+A)(·)‖Lp(3·B′) ≤ ε

√
|A|
|G|
‖A ∗ (A+A)‖1/2

Lp/2(3·B′) + ε2
|A|
|G|

.

Let B′′ be a regular Bohr set such that B′′ ⊆ (B′′0 )1/2, so B′′ +B′′ ⊆ B′′0 .
Since ‖(A+A) ∗A‖Lp/2(3·B′) ≤ ‖G ∗A‖Lp/2(3·B′) = αβ,

‖A ∗ (A+A) ∗mB′′ −A ∗ (A+A)‖Lp(3·B′) ≤ 2εαβ.

As in the finite field vector space case, the proof follows along the lines of the proof of Theorem 37.
However, we get extra saving here due to the fact that we can expect (A+A) to have much larger density.

Let c = 1
16 . If there exists x such that A ∗mB′′(x) ≥ (1 + c)α, we are done. Assume otherwise that

‖A ∗mB′′‖∞ < (1 + c)α. By Proposition 10,

Et∈B+B′′A ∗mB′′(t) ≥
15α

16
.

Thus A ∗mB′′(x) ≥ 7α
8 for at least a 7

8 -fraction of x ∈ B +B′′.
If |(A+A) ∩ (B +B′′)| ≥ 3|B+B′′|

4 , then for all x ∈ 3 ·B′,

|(x− (A+A) ∩ (B +B′′)) ∩ (B +B′′)|
≥ |(A+A) ∩ (B +B′′)|+ |B +B′′| − |B +B′′ + 3 ·B′|

≥ 3|B +B′′|
4

− 4νd|B|

≥ 5|B +B′′|
8

.

Hence, for all x ∈ 3 ·B′,

(A+A) ∗A ∗mB′′(x) ≥
(

5

8
+

7

8
− 1

)
7αβ

8
>
αβ

4
,
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so

Ex(A+A) ∗A ∗mB′′(x)(3 ·A′)(x) >
α2ββ′

4
.

By Holder’s inequality,

|G|
|3 ·B′|

|Ex((A+A) ∗A− (A+A) ∗A ∗mB′′(x))(3 ·A′)(x)|

≤ ‖(A+A) ∗A− (A+A) ∗A ∗mB′′‖Lp(3·B′)‖(3 ·A′)‖Lp/(p−1)(3·B′)

≤ 2εαβ(1 + c)α

By choosing ε = 1
64 , we get

|Ex((A+A) ∗A− (A+A) ∗A ∗mB′′(x))(3 ·A′)(x)| ≤ α2ββ′

8
,

so

Ex(A+A) ∗A(x)(3 ·A′)(x) ≥ α2ββ′

4
− α2ββ′

8
=
α2ββ′

8
,

which contradicts the assumption.
Consider the case |(A+A)∩ (B+B′′)| < 3|B+B′′|

4 . We proceed as in the proof of Theorem 5.3, noticing
that for x ∈ −A′,

(−A−A) ∗A(x) = Ey(−A−A)(x− y)A(y) = EyA(y) = αβ.

Note that our assumption that A+A is small implies

|(−A−A) ∩ (B +B′ +B′)| = |(A+A) ∩ (B +B′ +B′)| < 3|B +B′′|
4

+ |B +B′ +B′\B| < 7|B|
8
.

Apply Theorem 31 with ε = 10−4 and the sets A30 = A,X30 = −A−A, B̃30 = B, and B30 = B′ to get a
regular sub-Bohr set B′′′ of B′ such that

‖(−A−A) ∗A ∗mB′′′ − (−A−A) ∗A‖Lp(B′) ≤ 10−4
√
αβ‖(−A−A) ∗A‖1/2

Lp/2(B′)
+ 10−8αβ ≤ 10−3αβ,

using again the trivial upper bound (−A−A)(x) ≤ G(x). Thus, by Holder’s inequality

|Ex∈B′((−A−A) ∗A ∗mB′′′(x)− (−A−A) ∗A(x))(−A′)(x)| ≤ 10−3αβ · (1 + c)α ≤ α2β

256
,

where we use that Ex∈B′(−A′)(x) ≤ (1 + c)α since otherwise we would have density increment. Hence,

Ex∈B′(−A−A) ∗A ∗mB′′′(x)(−A′)(x)

≥ Ex∈B′(−A−A) ∗A(x)(−A′)(x)− α2β

256

≥ α2β − α2β

256

=
255α2β

256
.

If ‖A ∗mB′′′‖∞ ≤ (1 + c)α, since A ∗mB′′′ is supported on B+B′ and |(−A−A)∩ (B+B′+B′)| < 7|B|
8 ,

for x ∈ B′,

(−A−A) ∗A ∗mB′′′(x) =
1

|G|
∑

y∈B+B′

(−A−A)(y)A ∗mB′′′(x− y) ≤ 7|B|/8
|G|

(1 + c)α <
15αβ

16
,
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so

Ex∈B′(−A−A) ∗A ∗mB′′′(x)(−A′)(x) ≤ 15αβ

16
· (1 + c)α <

255α2β

256
,

contradicting the above inequality.
We can easily check that in both cases the Bohr sets B′′ and B′′′ satisfy the required condition on the

dimension and radius.

Corollary 48. The largest subset of Zn with no nontrivial solution to x + y + z = 3w has size at most
n exp(−c(log n)1/5).

Proof. Let P be the property of containing a nontrivial solution to x+ y + z = 3w. If |A
′|

|B′| >
9
8α then we

immediately obtain density increment. Otherwise, assume that A contains no nontrivial solution. Then

ExA ∗ (A+A)(x)(3 ·A′)(x) = Ex,yA(y)(A+A)(x− y)(3 ·A′)(x) ≤ |A
′|

|G|2
≤ 9

8

αβ′

|G|
<
α2ββ′

16
,

as long as |B| > 32α−1. We get the desired bound from Theorem 37.

7 Upper bounds for almost periodicity

Having seen the applications of Lp almost periodicity, in this section, we turn to discuss the limits on the
quantitative bounds on the size of the set of almost periods in Theorem 12, which has direct consequences to
the quantitative bounds in Roth’s theorem obtained from almost periodicity. There are several parameters
of interest here, the dimension p, the set density α and the approximation error ε. We will first give a
construction showing that the linear dependence on p in the exponent is necessary.

Theorem 49. Let α be an absolute constant, and q a fixed prime. Let ε be a sufficiently small constant
depending only on α. There exists a subset Ā of Fnq of density α such that the set of elements x ∈ Fnq such
that

‖Ā ∗ Ā(x+ ·)− Ā ∗ Ā(·)‖p < εα+ ε2

has size at most |Fnq |/(1/α)cp for some constant c depending on α and q.

Proof. We first construct a subset Ã of Fpq of density α such that ‖Ã ∗ Ã(y + ·) − Ã ∗ Ã(·)‖pp is large for
all y 6= 0. We will construct Ã as a random set with a special structure. Group each nonzero element of
Fpq into pairs {x,−x}, and let B be the set of representatives (one from each pair). We pick a random
subset A′ of B by choosing each element independently with probability 2α qp

qp−1 . For each a
′ ∈ A′, we flip

a fair coin to decide whether we include x or −x (so at most one of them is included). We have EEA = α.
Furthermore, by Hoeffding’s inequality, the probability that |EA−α| > ε is at most 2 exp(−2ε2(qp−1)/2).

Clearly
A ∗A(0) = 0.

For any y 6= 0,

EA ∗A(y) =

∑
x∈Fpq EA(x)A(y − x)

qp
=
qp − 2

qp
α2q2p

(qp − 1)2
= α2 − α2

(qp − 1)2
,

since for nonzero x and y − x (belonging to different pairs {u,−u}, u ∈ B), they are included in A in-
dependently with probability α qp

qp−1 . Furthermore, for each x ∈ Fpq , A(x)A(y − x) is independent of
all but at most two other random variables A(x′)A(y − x′). Thus, we can greedily partition Fpq into
at most 5 sets Sh, 1 ≤ h ≤ 5, such that the random variables A(x)A(y − x) for x ∈ Sh are indepen-
dent, and |Sh| ≥ qp/10 for each h. By the union bound and Hoeffding’s inequality, the probability that∣∣∣A ∗A(y)−

(
α2 − α2

(qp−1)2

)∣∣∣ > ε is at most 10 exp(−2ε2qp/10).
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Choose ε = q−p/3, we get by the union bound that with probability at most 12qp exp(−2qp/4) < 1/2

(assuming p is sufficiently large), |EA−α| ≤ q−p/3 and for all y 6= 0,
∣∣∣A ∗A(y)−

(
α2 − α2

(qp−1)2

)∣∣∣ ≤ q−p/3.
By arbitrarily adding or removing at most q2p/3 elements from A, we get a set Ã with EÃ = α,

Ã ∗ Ã(0) ≤ q−p/3 + 2q−p/3 = 3q−p/3,

and for all y 6= 0,

Ã ∗ Ã(y) ≥ α2 − α2

(qp − 1)2
− q−p/3 − 2q−p/3 ≥ α2 − 4q−p/3.

Here, we used that removing an element decreases
∑

x∈Fnq A(x)A(y − x) by at most 2, and adding an
element increases

∑
x∈Fnq A(x)A(y − x) by at most 2.

Notice that for y 6= 0,

‖Ã ∗ Ã(y + ·)− Ã ∗ Ã(·)‖pp ≥
|Ã ∗ Ã(y)− Ã ∗ Ã(0)|p

qn
≥ (α2 − 7q−p/3)p

qp
.

We assume that q is a fixed constant (for example, q = 3), and choose ε a small enough constant
depending only on α and q such that

εα+ ε2 <
α2

2q
.

We now come back to Fnq . For x ∈ Fnq , let x[p] be the first p coordinates of x. Let V be the subspace
consisting of elements x for which xi = 0 for all i > p. Let Ā = {x : x[p] ∈ Ã}. We have EĀ = α, and

Ā ∗ Ā(y) = Ã ∗ Ã(y[p]).

Thus, for any y /∈ V , so y[p] 6= 0, we have

‖Ā ∗ Ā(y + ·)− Ā ∗ Ā(·)‖p > εα+ ε2.

Hence, the set of almost periods is exactly V , which has codimension p and size

|V | =
|Fnq |
qp

=
|Fnq |

(1/α)cp
,

where c is some constant depending on α and q.

The above construction has the additional property that the set of almost periods remain small even if
we replace A by a constant density subset of A. The above construction starts to work when ε� α/q. If
we instead change the dependency and force the elements {x,−x} to appear in pair (instead of appearing
exclusively), we get a lower bound which starts to work when ε� (α/q)1/2.

This theorem gives the tight asymptotic dependence on p when α and ε are treated as fixed constants.
The tight dependence when α and ε are treated as asymptotic parameters and p is fixed comes from a
known construction of Green [18] showing that Chang’s lemma is essentially tight.

Theorem 50. Let α ≤ 1/8, δ ≤ 1/32 and δ−2 logα−1 ≤ logN
log logN . There exists a set A of density α

for which the large spectrum ∆δ(A) is not contained in {
∑

s∈S εss, εs ∈ {−1, 0, 1}} for any set |S| ≤
cδ−2 logα−1.

The construction first constructs a weighted set with the required property on the large spectrum,
then transform this to a genuine set using discrepancy theory. The construction of the weighted set is a
“smooth intersection” of a version of Ruzsa’s niveau sets. We omit further details of the proof of Theorem
50, which can be found in [18].

Using Theorem 50, we prove that the dependency on α and ε in Theorem 12 is tight.
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Theorem 51. Let α be an absolute constant, p ≥ 2. Let ε be sufficiently small (depending on α). There
exists a subset A of ZN of density α such that the set of elements x ∈ ZN such that

‖A ∗A(x+ ·)−A ∗A(·)‖p < εα+ ε2

has size at most N/(1/α)c/ε
2 for some constant c.

Proof. Note that
‖A ∗A(x+ ·)−A ∗A(·)‖p ≥ ‖A ∗A(x+ ·)−A ∗A(·)‖2,

hence it suffices to prove the above for p = 2.
Let A be the set given in Theorem 50 with α ≤ 1/8 and δ = Cε for a large absolute constant C > 1000.

In this case

‖A ∗A(x+ ·)−A ∗A(·)‖22 =
∑
χ

|Â ∗A(χ)(χ(−x)− 1)|2

=
∑
χ

|Â(χ)|2|χ(−x)− 1|2

≥ δ2α2
∑

χ∈∆δ(A)

|χ(−x)− 1|2.

In particular, if
‖A ∗A(x+ ·)−A ∗A(·)‖2 < εα+ ε2 < 2εα,

then
δ2α2

∑
χ∈∆δ(A)

|χ(−x)− 1|2 < 4ε2α2,

so ∑
χ∈∆δ(A)

|χ(−x)− 1|2 < 4/C2.

Hence, for all such x, |χ(−x)− 1| < 2/C. Thus, x ∈ B(∆δ(A), 8π/C).
Finally, we need to prove an upper bound on |B(∆δ(A), 8π/C)|. Assume that

|B(∆δ(A), 8π/C)|/N > exp(−C̃ε−2 logα−1).

Notice that for all λ ∈ Λ, and B = B(λ, ρ),∣∣∣∣ |B|N − B̂(λ)

∣∣∣∣ ≤ Ex |B(x)(1− λ(x))| ≤ ExρB(x) =
ρ|B|
N

.

Hence,

|B̂(λ)| ≥ |B|
N

(1− ρ).

Thus, λ ∈ ∆1−ρ(B). Hence,
∆δ(A) ⊆ ∆1−8π/C(B(∆δ(A), 8π/C)).

Theorem 22 implies that

∆1−8π/C(B(∆δ(A), 8π/C)) ⊆ {
∑
t∈T

εtt, εt ∈ {−1, 0, 1}}

for a set
|T | ≤ C22(1− 8π/C)−2C̃ε−2 logα−1.
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By choosing C̃ to be a sufficiently small positive constant (depending only on C), we get |T | ≤ c50δ
−2 logα−1,

which contradicts our assumption on ∆δ(A). Hence,

|B(∆δ(A), 8π/C)|/N ≤ exp(−C̃ε−2 logα−1).

Thus the set of elements x ∈ ZN such that

‖A ∗A(x+ ·)−A ∗A(·)‖2 < εα+ ε2

has size at most N/(1/α)c/ε
2 for some constant c.

8 L∞ almost periodicity for sets with bounded VC dimension

Since we benefit from Lp almost periodicity for very large p, it is natural to wonder if one can get a uniform
almost periodicity result, i.e., an L∞ almost periodicity result. However, by the upper bound in Theorem
49, it is evident that one cannot get an L∞ almost periodicity result for general sets. Nevertheless, with
an extra condition on the set A, it is possible to get a large set of L∞ almost periods. The notion we need
is bounded Vapnik-Chervonenkis dimension (VC dimension).

Definition 52. The VC dimension dimV C(S) of a collection S of subsets of a ground set X is the largest
k such that there exists a subset Y of X of size k such that for every subset Z of Y , there exists S ∈ S
such that Z = S ∩ Y . We say that Y is shattered by S if the above happens.

The VC dimension dimV C(A) of a subset A of an abelian group G is the VC dimension of the collection
S = {A+ x, x ∈ G}.

The relative VC dimension of subsets A and X of an abelian group G, denoted by dimV C(A,X), is
the VC dimension of the collection S = {A ∩ (x−X), x ∈ A+X}.

We remark that we use a different notation from [39], where they use dimV C(A) to denote dimV C(A,A).
However, the difference between the two definitions is not crucial, as made clear by the following immediate
facts about the VC dimension of subsets of an abelian group.

Lemma 53. For A ⊆ G,

dimV C(A) = dimV C(−A) = dimV C(A+ x) = dimV C(G,A).

For A,X ⊆ G,
dimV C(A) ≥ dimV C({(A+ x) ∩X,x ∈ G}),

dimV C({A ∩ (x−X), x ∈ G)})− 1 ≤ dimV C(A,X) ≤ dimV C({A ∩ (x−X), x ∈ G)}) ≤ dimV C(X).

For A ⊆ G,
dimV C(A)− 1 ≤ dimV C(A,A) ≤ dimV C(A).

Proof. The first statement is immediate from the definition.
For the first part of the second statement, notice that if a set Y of size k is shattered by {(A+x)∩X}

then Y ⊆ X, and for any Z ⊆ Y , there is x ∈ G such that Z = Y ∩ ((A+ x) ∩X). Then

Z = (A+ x) ∩X ∩ Y = (A+ x) ∩ Y.

Hence, Y is shattered by the collection {A+ x}. For the second part of the second statement, notice that
A ∩ (x−X) = ∅ for all x /∈ X +A.

The upper bound in the third statement follows from the first part of the second statement. For the
lower bound, notice that if a set Y of size k is shattered by {A+ x}, then Y = (A+ x)∩ Y for some x, so
Y ⊆ A+ x. For every subset Z of Y , we can find u ∈ G such that Z = Y ∩ (A+ u), so

Z = Y ∩ (A+ x) ∩ (A+ u),
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and
Z − x = (Y − x) ∩ ((A+ u− x) ∩A).

In particular, Y − x is shattered by {(A+ u) ∩A, u ∈ G}. Hence,

dimV C(A) ≤ dimV C({(A+ u) ∩A, u ∈ G}) ≤ dimV C(A,A) + 1.

The third property implies that the condition dimV C(A) ≤ d and dimV C(A,A) ≤ d are essentially the
same. To motivate our results, we state some examples of sets with bounded VC dimension.

Example 54. A coset of a subgroup of G has VC dimension 1, since the translates of a subgroup are
disjoint.

A union of k cosets of a subgroup of G has VC dimension at most k. This is since any (k+ 1)-element
set which is shattered by a union of k cosets must be contained in a single translate of the union, so two
elements must be in the same coset, which cannot be shattered by translates of unions of cosets.

Example 55. An arithmetic progression in Zn or Z of length at least 3 has VC dimension 2. This is since
2 adjacent elements of the arithmetic progression are shattered. However, assuming that a 3-element set is
shattered, this set must be a subset of a translate of the arithmetic progression, and then middle element
of the 3-element set cannot be shattered.

A generic generalized arithmetic progression of dimension k, {
∑k

i=1 aini, 0 ≤ ai ≤ Li}, has VC di-
mension at most 2k. Here, we assume ni−1 = o(ni). Indeed, assume that there exists a set Y of 2k + 1
points which is shattered. Without loss of generality, we can assume Y ⊆ {

∑k
i=1 aini, 0 ≤ ai ≤ Li}. By

genericity, points
∑k

i=1 b
j
ini are covered in a translate of the generalized arithmetic progression if and only

if xi ≤ bji ≤ xi +Li for some xi and all j. Thus, if we choose Mi ∈ Y with maximum i-coordinate, mi ∈ Y
with minimum i-coordinate. Then if Z is any subset of Y containing all Mi and mi and a translate of the
generalized arithmetic progression covers Z, it must in fact cover Y , since any other point in Y has the
i-coordinate between the i-coordinate of mi and Mi. Since there are at most 2k such points mi and Mi,
Y cannot be shattered.

In [39], an L∞ almost periodicity result is established for sets of bounded VC dimensions. While VC
dimension is a combinatorial notion of set systems, it is closely related to the notion of stability in model
theory. A set A is d-stable if there does not exist x1, x2, · · · , xd such that for all i ≤ d, there is some yi
such that {x1, x2, · · · , xi} = {x1, x2, · · · , xd} ∩ (A − yi). Thus, stability is a much stronger notion than
having bounded VC dimension. In particular, d-stable sets have VC dimension at most d − 1, since if
{x1, x2, · · · , xd} is shattered by {A − x} then it also witnesses d-instability. One can find in [2, 39, 42]
how assumptions on stability or VC dimension lead to a much more efficient bound for the arithmetic
regularity lemma. In fact, L∞ almost periodicity [39] and a close analog of L∞ almost periodicity [2] are
used to establish this result.

Theorem 56 (L∞ almost periodicity). Let A,X ⊆ G be subsets with dimV C(A,X) ≤ d. Assume that
|A+S| ≤ K|A|. There exists a subset T of S of size at least K−Cdk2/ε2 |S| such that for all t1, t2, · · · , t2k ∈
T ,

‖A ∗X(t1 − t2 + · · ·+ t2k−1 − t2k + ·)−A ∗X(·)‖∞ ≤ ε
|A|
|G|

.

Theorem 56 is the immediate analog of Theorem 12. All of the machineries we developed, particularly
the bootstrapping procedure to transform an arbitrary set of almost periods to a structured set of almost
periods (subspace or Bohr set), hold exactly as before. We will give a proof of Theorem 56 in the next
subsection, following [39]. This proof directly follows the ideas in the proof of Theorem 12, with the only
change being the control of E supx |mā∗X(x)−mA∗X(x)| instead of EEx|mā∗X(x)−mA∗X(x)|p, where
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ā is a sample of n independent elements from A. The control of the supremum is well-known in probability
theory, specifically in the study of empirical processes. This perhaps justifies the VC dimension condition,
which is exactly what is needed in empirical process theory.

Notice that dimV C(A,X) ≤ d if dimV C(X) ≤ d. A much shorter proof of a version of Theorem 56
under the condition dimV C(A) ≤ d is available in [2], which also makes essentially similar use of the VC
dimension condition.

Theorem 57 (L∞ almost periodicity). Let A,X ⊆ G. Assume that dimV C(A) ≤ d, and |A+S| ≤ K|A|.
There exists a subset T of S of size at least

(
cε
Kk

)d |S| such that for all t1, t2, · · · , t2k ∈ T ,

‖A ∗X(t1 − t2 + · · ·+ t2k−1 − t2k + ·)−A ∗X(·)‖∞ ≤ ε
|A|
|G|

.

Furthermore, the set T does not depend on X.

In particular, Theorem 57 gives a much stronger quantitative bound when A = X under only a slightly
stronger condition. While in [2] and in the remarks in [39], Theorem 57 is only stated for dense A and
symmetric convolution A ∗ A, we in fact observe that a small generalization of the proof in fact gives
the stronger conclusion above. Notice the asymmetric roles of A and X with respect to the bounded VC
dimension condition in Theorem 56 and Theorem 57.

We cover the short proof of Theorem 57 in Subsection 8.2, slightly generalizing the result in [2] from
the dense case (|A| ≥ α|G|) to the small expansion case (|A + S| ≤ K|A|). Even though this proof is
shorter, we decide to also give the longer proof via chaining, since it has a direct correspondence with the
techniques we developed earlier, and extends the previously observed connection between results in additive
combinatorics and results in probability theory. In fact, we believe that this difficulty is understandable
since Theorem 56 is slightly more general than Theorem 57. In Theorem 56, the bounded VC dimension
condition is placed on X while the small expansion condition is placed on A. In Theorem 57, both
conditions are placed on A. Further details of the comparison between two results are made clear at the
end of Subsection 8.2, after both proofs are given.

8.1 L∞ almost periodicity via chaining

In this subsection, we will follow [39] to prove an L∞ almost periodicity result for sets with bounded
VC dimension using techniques from the theory of empirical processes, which perhaps suggests that the
condition on the VC dimension is not surprising.

We will use a similar sampling approach to find the almost periods. However, instead of getting an Lp

bound, we will get an L∞ bound under the extra assumption of bounded VC dimension. The main idea
in the proof is to bound the expectation of the L∞ norm of |mā ∗ X(x) −mA ∗ X(x)| where ā is again
a vector of n elements sampled independently at random from A. This is done via a process referred to
as chaining in the study of empirical processes. For the reader’s convenience, we reproduce the chaining
argument, which uses many nice ideas. We follow [7] in this exposition.

Chaining is used to bound empirical processes of the form S = supj Sj for

Sj =
1

n

n∑
i=1

UiXj(ai)− (EUi)
|Xj |
|X |

,

where Xj are subsets of X and ai are sampled independently and uniformly at random from X , and Ui
are independent random variables which are further independent of all ai. If we take Ui to be 1, X = A,
Xj = (j −X) ∩ A, we would arrive back at our setting. The necessity of this generalization is discussed
later. The rough idea of chaining is to equip the sets Xj with the metric dX (Xj , Xj′) = |Xj∆Xj′ |/|X |,
then show that if |Xj∆Xj′ | is small, we have very good concentration of Sj − Sj′ . Together with a good
covering of the sets so that each set is close to at least one set in the covering in the above metric, we
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obtain a bound on the L∞ norm of Sj − Sj′ . We then chain an arbitrary Sj to S0 by a telescoping sum
of sets which are close in the metric dX , and obtain the required L∞ bound. A crucial tool, which takes
into account the bounded VC dimension condition, is Haussler’s packing lemma, which allows us to run
efficient union bounds in bounding the L∞ norms.

Lemma 58 (Haussler’s packing lemma). Let |A| = n. Let S be a collection of subsets of A of VC
dimension d. If D is a subset of S such that the symmetric difference of any two sets in D has size at
least k, then

|D| ≤
(
Cn

k

)d
.

We skip the proof of Haussler’s packing lemma, which can be found in [24].
In the chaining argument, we link Sj to S0 using dyadic steps in the metric dX . In particular, we take

a cover Dt of the collection of sets {Xj} so that each set is at distance 2−t from some set in the cover Dt.
We use exponential concentration and a trivial union bound to bound E supj∈Dt,j′∈Dt+1

|Sj−Sj′ |. A naive
use of the argument takes X = A and Xj = (j −X) ∩ A for j ∈ G, and Ui = 1. However, the chaining
must then take place with the number of steps depending on |A|, while our quantitative bounds should
depend only on d and not |A|. This occurs since when we localize the chain at very small scale (t much
bigger than log n), the union bound starts to blow up while the fluctuations cannot be brought below 1/n.
However, since we sample only n elements, we actually expect no fluctuation at very small scale (large t).
We need to be able to take into account our “finite sample size”. The idea to do this is a beautiful idea in
probability theory, known as symmetrization.

Lemma 59 (Symmetrization). Let X be a finite set, {Xj} a collection of subsets of X . Let ai be inde-
pendently and uniformly chosen elements of X . Then

E sup
j

(∣∣∣∣∣ 1n
n∑
i=1

Xj(ai)−
|Xj |
|X |

∣∣∣∣∣
)
≤ 2E sup

j

(∣∣∣∣∣ 1n
n∑
i=1

UiXj(ai)

∣∣∣∣∣
)
,

where Ui are independent random variables receiving value 1 with probability 1/2 and value −1 with prob-
ability 1/2, which are further independent of all ai.

Proof. Let a′i be independently and uniformly chosen elements of X , which are further independent of all
ai and Ui. Then

E sup
j

(∣∣∣∣∣ 1n
n∑
i=1

Xj(ai)−
|Xj |
|X |

∣∣∣∣∣
)

= E sup
j

(∣∣∣∣∣ 1n
n∑
i=1

[Xj(ai)−E(Xj(a
′
i))]

∣∣∣∣∣
)

≤ E sup
j

(∣∣∣∣∣ 1n
n∑
i=1

[Xj(ai)−Xj(a
′
i)]

∣∣∣∣∣
)

= E sup
j

(∣∣∣∣∣ 1n
n∑
i=1

Ui[Xj(ai)−Xj(a
′
i)]

∣∣∣∣∣
)

≤ E sup
j

(∣∣∣∣∣ 1n
n∑
i=1

UiXj(ai)

∣∣∣∣∣
)

+ E sup
j

(∣∣∣∣∣ 1n
n∑
i=1

UiXj(a
′
i)

∣∣∣∣∣
)

= 2E sup
j

(∣∣∣∣∣ 1n
n∑
i=1

UiXj(ai)

∣∣∣∣∣
)
,

where the first inequality follows from Jensen’s inequality applied to the convex function |x|, the second
equality follows since {Ui(Xj(ai) − Xj(a

′
i))}j has the same distribution as {Xj(ai) − Xj(a

′
i)}j , and the

final equality follows since ai and a′i are identically distributed.
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The symmetrization inequality is extremely useful, since it allows us to turn the problem of bounding
the supremum of the empirical averages of the set system Xj of a possibly large X to bounding

sup
j

(∣∣∣∣∣ 1n
n∑
i=1

UiXj(ai)

∣∣∣∣∣
)

(thinking of ai as being fixed and Ui being random). This allows us to localize the problem, reducing the
problem over X to an “effective” problem over an n-element set. One can imagine that chaining over the
original universe X would lead to many steps that localize beyond 1/n, the union bound over such steps is
very inefficient since most atoms would contain no point from the n sampled points. Of course, reducing
the union bound is not possible since that requires knowledge of the position of the points. However, by
symmetrizing with the n Rademacher variables one essentially reduces the randomness to that around
the finite sample of points. This localization allows us to apply the previously described chaining idea to
1
n

∑n
i=1 UiXj(ai).

Lemma 60 (Chaining). Let a1, a2, · · · , an be fixed elements in X . Let {Xj} be a collection of subsets of
X with VC dimension at most d. Then

E sup
j

(∣∣∣∣∣ 1n
n∑
i=1

UiXj(ai)

∣∣∣∣∣
)
≤ C
√
d√
n
.

Proof. For ā = {a1, a2, · · · , an}, {ā∩Xj} (as a collection of subsets of ā) has VC dimension at most d, by
Lemma 53.

For t = 0, 1, · · · , dlog2 ne, let Dt be a maximal collection of sets in {ā ∩ Xj} such that for any
Dt,1, Dt,2 ∈ Dt, |Dt,1∆Dt,2|/n ≥ 2−t. By Lemma 58, |Dt| ≤ 2(t+C0)d for some constant C0. Further-
more, by maximality, for any ā ∩Xj , there must exist Dt(j) ∈ Dt for which |Dt(j)∆(ā ∩Xj)| < 2−tn.

Let

f(ā ∩Xj) =
1

n

n∑
i=1

UiXj(ai).

For each t, let Dt(j) be a point in Dt such that |Dt(j)∆(ā ∩Xj)| ≤ 2−tn. Define yt(j) inductively by

ydlog2 ne(j) = ā ∩Xj ,

and for 1 ≤ t ≤ dlog2 ne − 1,
yt−1 = Dt−1(yt).

We can write

f(ā∩Xj) = (f(ydlog2 ne)− f(ydlog2 ne−1)) + (f(ydlog2 ne−1)− f(ydlog2 ne−2)) + · · ·+ (f(y1)− f(y0)) + f(y0).

Note the crucial property that |yt+1∆yt| ≤ 2−tn, and yt ∈ Dt. We will boundE supyt∈Dt,yt+1∈Dt+1
|f(yt+1)−

f(yt)|, from which we can derive a bound on E sup |f(ā ∩Xj)|.
We have

f(yt+1)− f(yt) =
1

n

∑
i∈yt+1\yt

Ui −
1

n

∑
i∈yt\yt+1

Ui,

so by independence,

E exp(λ(f(yt+1)− f(yt))) =

(
exp(λ/n)

2
+

exp(−λ/n)

2

)|yt+1∆yt|
.

Using that exp(x) ≤ 1 + x+ x2 for |x| ≤ 1, assuming that λ ≤ n, we have

E exp(λ(f(yt+1)− f(yt))) ≤ (1 + λ2/n2)2−tn ≤ exp(2−tλ2/n).
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By the trivial bound

E exp

(
sup

yt∈Dt,yt+1∈Dt+1

λ(f(yt+1)− f(yt))

)
≤

∑
yt∈Dt,yt+1∈Dt+1

E exp(λ(f(yt+1)− f(yt)))

≤ 21+2(t+C0)d exp(2−tλ2/n).

By Jensen’s inequality,

exp

(
E sup
yt∈Dt,yt+1∈Dt+1

λ(f(yt+1)− f(yt))

)
≤ E exp

(
sup

yt∈Dt,yt+1∈Dt+1

λ(f(yt+1)− f(yt))

)
,

so

E sup
yt∈Dt,yt+1∈Dt+1

(f(yt+1)− f(yt)) ≤
C1d(1 + t) + 2−tλ2/n

λ

for an absolute constant C1.
Choose λ =

√
d2tn. For t ≤ log2(

√
n/d), λ ≤ n, and

E sup
yt∈Dt,yt+1∈Dt+1

(f(yt+1)− f(yt)) ≤
C2(1 + t)

√
d√

2tn
.

If t > log2(
√
n/d), we instead use the deterministic bound

f(yt+1)− f(yt) ≤
|yt+1∆yt|

n
≤ 2−t,

since |Ui| ≤ 1. Hence,
E sup
yt∈Dt,yt+1∈Dt+1

(f(yt+1)− f(yt)) ≤ 2−t.

Thus,

E

dlog2 ne∑
t=0

sup
yt∈Dt,yt+1∈Dt+1

(f(yt+1)− f(yt)) ≤
dlog2 ne∑
t=0

C2(1 + t)
√
d

2t/2
√
n

+

dlog2 ne∑
t>log2(

√
n/d)

2−t

<
C3

√
d√
n

+ 2− log2(
√
n/d) =

C4

√
d√
n
.

Furthermore,
Ef(y0) = 0.

Hence,

E sup
j
f(ā ∩Xj) <

C4

√
d√
n
.

Similarly,

E sup
j

(−f(ā ∩Xj)) <
C4

√
d√
n
.

Hence,

E sup
j
|f(ā ∩Xj)| <

C
√
d√
n
.
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We next give the proof of Theorem 56.

Proof of Theorem 56. Let X = A, Xj = (j −X) ∩A for j ∈ X +A. Then, dimV C({Xj}) ≤ d. Note that
if j /∈ X +A,

mā ∗X(j)−mA ∗X(j) = 0.

By Theorem 59 and Theorem 60,

E sup
j∈G

(|mā ∗X(j)−mA ∗X(j)|) = E sup
j∈B+A

(∣∣∣∣∣ 1n
n∑
i=1

Xj(ai)−
|Xj |
|X |

∣∣∣∣∣
)

≤ 2E sup
j∈B+A

(∣∣∣∣∣ 1n
n∑
i=1

UiXj(ai)

∣∣∣∣∣
)

= 2E

[
E

[
sup

j∈B+A

(∣∣∣∣∣ 1n
n∑
i=1

UiXj(ai)

∣∣∣∣∣
) ∣∣∣∣ā

]]

≤ 2
C
√
d√
n
.

Thus, with probability at least 1/2,

‖mā ∗X −mA ∗X‖∞ < 4
C
√
d√
n
.

The proof then proceeds identically to the proof of Theorem 13.

8.2 L∞ almost periodicity for sets with bounded VC dimension and small expansion

We give in this subsection a proof of Theorem 57, following [2]. We slightly generalize their results to the
setting of sets with small expansion |A + S| ≤ K|A| instead of dense A. In this proof, we use Haussler’s
packing lemma, Lemma 58, to directly deduce that for many y, |(A + y)∆A| is small, which is much
stronger, and in particular, implies that ‖A ∗X(y + ·)−A ∗X(·)‖∞ is small.

Lemma 61. For at least (δ/C)d|S| elements y in a translate of S, |(A+ y)∆A| ≤ δ|A+ S|.

Proof. Let X ⊆ S be such that {x + A, x ∈ X} forms a maximal collection of translates of A such that
|(A+ x)∆(A+ x′)| > δ|A+ S| for all x, x′ ∈ X. By Lemma 58, |X| ≤ (C/δ)d.

For any g ∈ S, |(A+g)∆(A+x)| ≤ δ|A+S| for some x ∈ X by maximality of X. Hence, |A∆(A+g−
x)| ≤ δ|A+ S|. By the pigeonhole principle, for some x ∈ X, there must be at least |S|(δ/C)d elements g
for which |(A+ g)∆(A+ x)| ≤ δ|A+ S|. Then |A∆(A+ y)| ≤ δ|A+ S| for all y = g − x, which holds for
at least |S|(δ/C)d elements y in a translate of S.

Lemma 61 readily implies Theorem 57.

Proof of Theorem 57. Notice that for all y given by Lemma 61,

|A ∗X(x+ y)−A ∗X(x)| = ||(A+ y) ∩ (x−X)| − |A ∩ (x−X)||
|G|

≤ |(A+ y)∆A|
|G|

≤ δ |A+ S|
|G|

≤ δK |A|
|G|

.

Hence,

‖A ∗X(y + ·)−A ∗X(·)‖∞ ≤ δK
|A|
|G|

.

This implies Theorem 57 via the standard machinery.
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We remark that this proof instead uses the VC dimension condition on A instead of X. One can think
of the result of Lemma 61 as a “first order” almost periodicity result, which applies directly to the set A.
In the L∞ almost periodicity result in the previous subsection and the other Lp almost periodicity results,
we get a “second order” almost periodicity, which applies to convolutions of two sets. As above, the first
order condition is much stronger than the second order condition. One can think that the bounded VC
dimension, coupled with the small expansion condition, is actually much stronger, giving a clean “first
order” condition. For Theorem 56, the additively structured condition is placed on A while the bounded
VC dimension condition is placed on X, leading to a more complicated situation where we cannot obtain
a “first order” condition but only a second order one, by combining the nice properties of A and X. Thus,
one can see the conditions in Theorem 56 as being slightly more general, separating the contribution of the
additive structure and bounded VC dimension. This should compensate for the longer proof of Theorem
56.

The proof given in this subsection heavily depends on efficient packing (which is in fact the only
necessary ingredient), and a nice translation invariant property of the set system considered in the additive
setting. In fact, one can roughly imagine that taking into full account this nice translation invariant
property of the set system (together with efficient packing and small expansion) essentially allows us to
sample a single element in the proof of Lemma 61 instead of a large number of elements as in the proof of
Theorem 56, leading also to the improved quantitative bound. It is natural to ask if the weaker conditions
in Theorem 56 are useful in any application, or if the proof via chaining allows for deducing uniform
continuity of more general objects.

Finally, we remark that the quantitative bound in Lemma 61 is in fact sufficiently good that we
can avoid the previous spectral bootstrapping procedure to get a structured set of almost periods via
saturation, which is employed in [2]. In particular, by choosing the constants appropriately, we can get
some k such that |2kT | ≤ K|kT | where T is the set of δ-almost periods. Here, K can be taken to be
exp((log δ−1)c). Then we can apply directly the quasipolynomial Bogolyubov-Ruzsa lemma [37] to get the
structured set of almost periods. Applying this procedure to our previous applications on Roth’s theorem
would unfortunately lead to some loss on the power of the log n factor in the final quantitative bound.

9 Concluding remarks

Almost periodicity results show that any dense set, or more generally, sets with small expansion under
the addition of an other set, exhibit an Lp periodic behavior under two-fold convolutions. The proof
follows from the simple idea of sampling a finite-size subset, which happens entirely in the physical space.
We also develop the spectral machineries to bootstrap the set of almost periods to a structured set of
almost periods (a subspace of bounded codimension, or a large Bohr set). We use this to obtain almost
logarithmic bounds for Roth’s theorem over general abelian groups, and Behrend-type bounds for Roth’s
theorem in four or more variables.

Almost periodicity has found many other exciting applications in additive combinatorics that are not
included in this essay. We describe several applications that can be deduced in quite straightforward
manner from the almost periodicity result. We refer the interested reader to the listed references for more
details.

Arithmetic progression in sumsets.
Bourgain [8] showed that for two subsets A,B of Zn with density α, β, A+ B contains an arithmetic

progression of length at least exp(c(αβ log n)1/3− log logn). Using Fourier analytic techniques, Green [19]
and Sanders [34] improved the bound to exp(c(αβ log n)1/2 − log logn).

Since the support of A ∗ B is exactly A + B, it is not surprising that that almost periodicity can be
applied to this application. Using almost periodicity, Croot-Laba-Sisask [14] further improved the bound
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to

exp

(
c

(
α log n

(log 2β−1)3

)1/2

− log(β−1 log n)

)
.

An analog with the tri-fold sumset A+A+A is also available in [38], where it is shown that A+A+A
contains an arithmetic progression of length at least

α exp

((
c log n

log3(2/α)

)1/2
)
.

Quasipolynomial Bogolyubov-Ruzsa lemma.
The Bogolyubov-Ruzsa lemma states that for a set A with density at least α, 2A−2A contains a large

subspace or Bohr set. It is known that the Bogolyubov-Ruzsa lemma implies the Freiman-Ruzsa theorem
on the structure of sets with small expansion. In particular, a polynomial bound for Bogolyubov-Ruzsa
lemma implies the polynomial Freiman-Ruzsa conjecture. Using almost periodicity, Sanders [37] shows a
quasipolynomial Bogolyubov-Ruzsa lemma, stating that for A with small doubling (|A+A| ≤ K|A|), 2A−
2A contains a coset progression of dimension at most logO(1)(2K) and size at least exp(− logO(1)(2K))|A|.
Here, a coset progression is a generalized progression of cosets of a subgroup. A nice exposition of this
result over finite field vector space can be found in [29], and a deduction using an exponential tail version
of almost periodicity instead of Lp norms together with an algorithmic version can be found in [4].

Arithmetic regularity lemma for sets with bounded VC dimension.
Green’s arithmetic regularity lemma [20] states that for a dense subset A of Fnp , there exists a subspace

V of Fnp of codimension M(ε) such that in all but an ε fraction of translates of V , A is uniform in
the translate, in the sense that all nontrivial Fourier coefficients of A restricted to the translate are small.
Green’s proof uses density increment and leads to a bound onM(ε) of tower type, which is in fact necessary
[26]. However, for sets with bounded VC dimension, and in particular, for stable sets, M(ε) can in fact be
taken to be polynomial in ε−1, as shown in [42] using ideas inspired from model theory. Using L∞ almost
periodicity, in [39], a similar result is shown, which can also be generalized to the case of sets with small
doubling. Independently, in [2], the polynomial arithmetic regularity lemma for sets with bounded VC
dimension in groups with bounded exponent is obtained from Lemma 61, using a bootstrapping procedure
involving saturation and the Bogolyubov-Ruzsa lemma. In fact, it is quite straightforward to get a version
of the polynomial arithmetic regularity lemma from the L∞ almost periodicity results that we covered.

Almost periods and subset sums.
In a recent work of the author in a different setting [31], in trying to understand the expansion property

of the set of subset sums Σ(A) = {
∑

s∈S s, S ⊆ A}, the central object is the set of “first order” almost
periods, Pd = {x : |(A + x)∆A| ≤ d}. Pd is exactly the set of elements whose inclusion does not expand
Σ(A) significantly. Instead of showing Pd is large, we show that Pd cannot be too large. However, by using
the stability of Pd under iterated sumsets, we transform the problem of understanding the much more
complicated subset sums to iterated sumsets. In this way, we obtain very useful information on Pd, which
allows us to show good expansion properties of Σ(A), resolving a previous conjecture of Alon-Erdős [1]
and several other questions on subset sums. It is also quite interesting that our bootstrapping procedure is
quite similar to that in [2], using iterated sumsets to achieve a certain level of saturation. This procedure
happens entirely in physical space instead of in the spectral domain as the bootstrapping procedure in
Section 4.

Finally, we end the essay with several interesting future directions. Many of the questions are commu-
nicated to the author by Professor Julia Wolf and Dr. Thomas Bloom.

Upper bounds for almost periodicity.
We discussed in Theorem 49 and Theorem 51 the upper bounds on the set of almost periods, which are

tight separately in p and in α, ε. The construction for the dependency on α and ε uses spectral information,
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and therefore cannot be improved as p grows. It would be very interesting to get a joint dependency in
p, α and ε, as in many applications, almost periodicity is used with p quite large.

Refining almost periodicity by passing to a dense subset.
Chang’s lemma is essentially tight by Theorem 50. However, Bloom [5], by a sampling approach in

the spectral domain, shows that one can improve Chang’s lemma by passing to a large subset of the large
spectrum. Bloom’s version of Chang’s lemma is used to deduce the best known bound on Roth’s theorem.
One can ask if the quantitative bound for almost periodicity can be significantly improved by passing
to a subset of A. We note, however, that the construction of the lower bound in Theorem 49 showing
the tight dependency on p yields an example that cannot be improved by passing to a constant density
subset. We do not know if such an example exists when one is concerned with the dependency on α and
ε. One can try sampling a random constant density subset of A, however, since this sampling procedure
does not necessarily lead to a smoothing effect (as opposed to sampling in the spectral domain), it is not
immediately clear that this would help.

Iterated almost periodicity for multiple convolutions.
As seen in the applications of almost periodicity, Lp almost periodicity on two-fold convolutions leads

to L∞ almost periodicity on three-fold convolutions by Holder’s inequality. However, even by taking
further convolutions, this procedure does not enlarge the set of almost periods. It is interesting to find a
method that takes into account multiple convolutions in finding the set of almost periods, which hopefully
leads to larger sets of almost periods. One possible approach is an iterative method that enlarges the set
of almost periods, i.e., an almost periodicity result that improves as the sets involved carry more periodic
structure. Corresponding upper bounds on the set of almost periods of multi-fold convolutions would also
be very important.

A physical argument for higher uniformity norms.
As in the applications of almost periodicity to Roth’s theorem, almost periodicity can be used to directly

show that a function with large U2 norm has density increment on a subspace or Bohr set, leading to essen-
tially a physical proof of such result. It would be very interesting to know if there is an analog of almost peri-
odicity that applies to higher uniformity norms.
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